
Naval Research Laboratory, Code 5540, Washington, D.C. 20375-5337

Proof Requirements in the
Orange Book: Origins,
Implementation, and
Implications

Garrel Pottinger

Mathematical Sciences Institute
409 College Avenue
Cornell University
Ithaca, NY 14850

February 11, 1994

A report prepared for the Naval Research Laboratory under contract N000173-93-P-
G934. Facts and opinions contained in this document are the responsibility of the author
and not the Naval Research Laboratory.

For additional copies of this report, please send e-mail to
landwehr@itd.nrl.navy.mil, or retrieve postscript via
www.itd.nrl.navy.mil/ITD/5540/publications/index.html
(e.g., using Mosaic).

Garrel Pottinger

Mathematical Sciences Institute

409 College Avenue

Cornell University

Ithaca, NY 14850

garrel@msiadmin.cit.cornell.edu

Final Deliverable under Contract N000173-93-P-G934.

February 11, 1994

i

ii

Contents

List of Tables vi

Preface vii

Acknowledgements viii

I INTRODUCTION AND OVERVIEW 1

1 Introduction 3

1.1 General Impressions : 4

1.1.1 Heterogeneous Complexity : : : : : : : : : : : : : : : 4

1.1.2 Forced Choices : 6

1.2 Aims and Limitations : 7

1.3 Structure of the Report : 8

2 Overview 8

2.1 Narrative, 1961{1983 : 8

2.2 Flashback: High Policy and High Politics, November 1977{

July 1990 : 12

2.3 Recent Trends : 17

II TECHNICAL CONTEXT 19

3 Time-sharing 21

4 The Classical Computer Security Problem 22

5 The Software Crisis 26

6 Program Veri�cation 28

7 Structured Programming and Design Veri�cation 32

8 Security Kernels and the Reference Monitor Concept 35

iii

9 Modeling Security 40

9.1 Classi�cation, Security Levels, and Clearances : : : : : : : : : 41

9.2 Bell/La Padula : 43

9.2.1 Basic Features : 43

9.2.2 The *-property and Trojan Horses : : : : : : : : : : : 45

9.2.3 Trusted Subjects : 45

9.2.4 Covert Channels : 46

9.3 Other Security Models : 47

III CREATING THE CENTER AND ORANGE BOOK 49

10 The DoD Computer Security Initiative 51

11 Locating the Center 53

12 Establishing the Center 56

13 Writing the Orange Book 57

13.1 Lineage : 57

13.2 Proof Requirements : 57

IV USING THE ORANGE BOOK 59

14 A Guide to Sections 15 through 18 61

15 Information and Expertise 62

16 Availability of Products 63

17 Design Veri�cation 64

18 Proof Requirements and Endorsed Tools 68

V COMMUNING WITH CLIO 69

19 Historiographic Questions 71

iv

VI APPENDICES AND REFERENCES 73

A Summary of Evaluation Criteria Classes, from the Orange

Book, pp. 93{94 75

B The Center's Publications 77

B.1 Final Evaluation Reports : 77

B.2 The Rainbow Series : 77

B.3 Other Publications : 82

C Products Evaluated by the Center 83

C.1 Operating System Products Rated C1{A1 : : : : : : : : : : : 86

C.2 Other Products : 91

D Learning to Do It Right | From Autodin II to Blacker 93

References 98

v

List of Tables

1 Final evaluation reports published by year. : : : : : : : : : : 77

2 Kinds of Evaluated Products List product entries. : : : : : : 83

3 Evaluated Products List product entries by kind and year. : : 86

4 Operating system products by level of trust and year, includ-

ing products for which evaluation has been completed and

products in Formal Evaluation. : : : : : : : : : : : : : : : : : 87

5 Rating Maintenance Phase Evaluated Products List entries

included in data used to prepare table 4. : : : : : : : : : : : : 87

6 Result of removing the e�ect of Rating Maintenance Phase

Evaluated Products List entries from table 4. : : : : : : : : : 88

7 Result of excluding Evaluated Products List entries for prod-

ucts in Formal Evaluation from data used in preparing table 4. 89

8 Result of excluding Evaluated Products List entries for prod-

ucts in Formal Evaluation from data used in preparing table 6. 89

9 Result of excluding Add-on Evaluated Products List entries

from data used in preparing table 8. : : : : : : : : : : : : : : 90

10 Bottom line comparison of tables 4, 6, 7, 8, and 9. : : : : : : 90

11 Comparison of percentages of products rated at levels C1{A1

according to tables 4, 6, 7, 8, and 9. : : : : : : : : : : : : : : 91

12 Comparison of yearly averages of operating system products

evaluated derived from tables 4, 6, 7, 8, and 9. : : : : : : : : 91

13 Other products rated C1{A1, including those for which eval-

uation has been completed and those in Formal Evaluation. : 92

14 Products in Vendor Assistance Phase and Design Analysis

Phase. : 92

vi

Preface

This report was written with three audiences in mind: specialists in com-

puter security who wonder how their �eld came to be as it is, computer

professionals mostly unacquainted with computer security who wonder what

it's about and how it came to be, and historians of technology who won-

der what kind of technology is involved in computer security and whether

enough information about the area can be gathered to form the basis for a

well grounded historical study.

Attempting to make the report intelligible to all three audiences, I have

sometimes explained things for the bene�t of one of the audiences (e.g., for

the bene�t of historians of technology, notes explain what the integers are

and what the assignment operator does) at the risk of boring or irritating

members of the other two. I have tried to spread this kind of thing around

pretty evenly (historians of technology need no explanation of who Clio is,

but one is included at the beginning section 19 for the possible bene�t of the

other two intended audiences), and I hope readers will not be much bothered

by it. The aim of being informative to as many as possible is worthwhile,

and, really, it costs the reader little to skip material that explains things

already known.

I alone am responsible for the factual accuracy, interpretive soundness,

and clarity and style of what follows, and am to blame for whatever de�-

ciencies the report may exhibit in respect of these qualities.

Garrel Pottinger

Ithaca, New York

vii

Acknowledgements

The research resulting in this report was supported in part by the UK Eco-

nomic and Social Research Council's Programme on Information and Com-

munication Technologies (PICT) and the University of Edinburgh. Addi-

tional support was provided by the United States Navy through the Naval

Research Laboratory and the United States Army Research O�ce through

the Mathematical Sciences Institute of Cornell University.

This document could not conceivably have been written had not those

who granted interviews, endured unannounced telephone calls, and respond-

ed to (sometimes exigent) messages sent by electronic mail been kind enough

to do so. I am grateful to them all. It should be noted that the views they

have expressed in response to my questions are their own, and not those of

any organization by which they are or have been employed or which they

otherwise represent or have represented.

Donld MacKenzie inspired the e�ort that led to the report's being writ-

ten, made it possible for the research to be undertaken by arranging the

support provided by PICT and the University of Edinburgh, and sustained

me throughout the e�ort with friendship and advice. Carl Landwehr, by

helping arrange the support provided by NRL, giving unstintingly of time,

knowledge, and advice, and being patient beyond all expectation, made the

report's completion possible.

I, and the report, have bene�ted greatly by the quality of Cornell's li-

braries and the diligence and skills of their sta�s, including particularly the

diligence and skills of Mary Patterson, Engineering Library.

My brother, Marion G. Pottinger, arranged through his employer, Smith-

ers Scienti�c Services, Inc., to facilitate the support provided by PICT and

NRL. Marion also made it possible for me to devote time to research by

bearing much more of the burden of �lial duty stemming from the illnesses

and deaths of our mother and father than was his due.

Rachel Maines, my wife and a trained historian of technology, helped me

both with the research and writing involved in producing this document and

in ways that go beyond what I can appropriately and adequately express.

viii

Part I

1

2

1 Introduction

The Orange Book (o�cially, Department of Defense Trusted Computer Sys-

tem Evaluation Criteria, DOD 5200.28-STD) de�nes a hierarchy of security

classes for computer systems. The hierarchy has seven levels | D, C1, C2,

B1, B2, B3, A1, listed in order of increasing security. Beginning with class

B2, some of the requirements used in de�ning assurance for the hierarchy

of security classes mandate that the system design and/or speci�cation be

proved to have certain speci�ed properties, and these proof requirements

become increasingly stringent in passing from level B2 through level B3 to

level A1.

This report addresses three main questions, focusing in each case on

issues related to proof requirements. The questions are:

(1) Origins { Why and how was the Orange Book written?

(2) Implementation { What kinds of ambiguities and vagueness associated

with the requirements de�ning assurance for the hierarchy of security

classes came to light when producers of computer systems tried to

build systems meeting these requirements, and how were ambiguities

and vagueness resolved?

(3) Implications { What implications do the answers to questions (1) and

(2) have for future attempts to specify assurance for computer systems

and evaluate them according to the resulting criteria?

The report is based on a combination of documentary evidence and inter-

views with persons involved in the processes mentioned in (1) and (2).

Although the report is focused on issues that arise from imposing highly

technical and esoteric requirements on computer system development, the

actions and interactions of a great variety of people and institutions have

in
uenced the course of events discussed in what follows: technical special-

ists in logic and computer science, business executives, librarians, members

of the defense and intelligence communities, the American Civil Liberties

Union (ACLU), the United States Congress, and those involved in making

high level policy in the Executive Branch of the Federal Government. The

discussion raises questions that require answers based on a correspondingly

diverse range of knowledge and expertise.

3

1.1 General Impressions

The breadth of the range of persons, institutions, and issues mentioned in

the preceding paragraph suggests that computer security is a di�cult sub-

ject. Furthermore, one would not expect, say, the defense and intelligence

communities to interact amicably with the American Civil Liberties Union.

In many cases, the duties of members of the defense and intelligence com-

munities require them to proceed on the basis of the authoritarian rule that

everything not explicitly permitted, including access to and dissemination of

information, is forbidden. In contrast with this, the ACLU is generally com-

mitted to the libertarian principle that everything not explicitly forbidden

is permitted and speci�cally committed to defending rights the exercise of

which, according to the Constitution of the United States, may not be for-

bidden. The presence of such inherent con
icts between parties to disputes

involved in deciding what to do about computer security problems suggests

that, besides being di�cult to understand, these disputes are likely to be

heated.

Both suggestions are correct, and some of the reasons for this are clear

from the example of the preceding paragraph and similar cases considered

below. The following two subsubsections argue that, in addition, the di�-

culty of understanding computer security and the heat involved in discus-

sions of the subject arise, in part, from essential features of the technical

enterprise of mechanized computation.

1.1.1 Heterogeneous Complexity

It is commonplace to say that computers and computing are hard to un-

derstand and deal with because they are complex.1 This, no doubt, is true.

But it is not very informative, unless something is said about the kind of

complexity involved | after all, in common speech, to say that something

is complex is nearly synonymous with saying that it is hard to understand

and deal with. Absent an account of the kind of complexity to which the

di�culty of understanding and dealing with computers and computing is at-

tributed, saying that the di�culty arises because computers and computing

are complex is uncomfortably like saying that opium causes sleep because it

has a dormative potency.

Two kinds of complexity involved in dealing with computers and com-

puting and their e�ect on our understanding of computational issues have
a

1
E. g., [Sha90, passim.].

4

been well speci�ed and scienti�cally studied: complexity due to the enor-

mous number of possibilities that arise for combinatorial reasons in many

common well de�ned problem solving situations [NS72] and complexity in-

volved in hierarchical systems composed, ultimately, from elements that are,

in themselves, very simple [Sim81].

But there is another kind of complexity that bears on the di�culty of

understanding and dealing with computers and computing that seems quite

di�erent from the kinds of complexity mentioned in the preceding paragraph

| to understand mechanized computation we must avail ourselves of infor-

mation drawn from an extraordinarily broad range of disciplines, and, in

fact, the range is so broad that no single person can encompass all that is

necessary. In what follows, I will call this kind of complexity \heterogeneous

complexity".

Heterogeneous complexity manifests itself, to begin with, in the technical

enterprise of computer system design, construction, and operation. The

technical base of this enterprise rests on information drawn from, at least,

the following �elds: electrical, electronic, optical, and systems engineering;

various branches of mathematics, including combinatorics, computational

complexity theory, algebra, automata theory, and numerical analysis; logic;

linguistics; psychology; and ergonomics.

Since heterogeneous complexity is an inherent feature of the technical

enterprise of computer system design, construction, and operation, the en-

terprise is essentially social | the Lone Ranger need not apply. Further-

more, due to the quite di�erent viewpoints represented by the participants

in the enterprise, communication among them is often di�cult. In e�ect, the

same factors that require cooperation and communication also make them

di�cult.

So far, discussion of heterogeneous complexity has been con�ned to the

technical enterprise of mechanized computation. But, in general, the dis-

cussion cannot be so con�ned, and, certainly, it cannot be so con�ned in

considering computer security, as the sequel makes abundantly clear. Con-

sequently, understanding issues of computer security requires drawing on

the resources of an even wider range of disciplines than those suggested by

the list given two paragraphs above. In turn, this requires achieving cooper-

ation and communication among persons with even more diverse viewpoints

than those involved in the technical enterprise of dealing with computers

and computation. The result of all this is that the same factors that require

cooperation and communication make them very di�cult indeed.

5

1.1.2 Forced Choices

It is not uncommon for technical disputes about mechanized computation to

become heated. The preceding discussion of heterogeneous complexity fur-

nishes a partial explanation of this fact | participants in such disputes often

approach the issues from quite di�erent points of view, and, consequently,

misunderstand and talk past each other. But this cannot be a complete

explanation of the sometimes heated character of technical disputes about

computers and computation, because such disputes often involve people with

very similar overall viewpoints. To non-disputants, at least, the issues may

appear to be about matters of detail, but, clearly, the details matter to the

disputants.

In fact, the details do matter. In such technical discussions, details

may be, and often are, enough to distinguish di�erent programs of research

and development, and people become passionate in arguing for programs of

research and development that they favor and against those that they do

not.

When someone competent to understand the technical issues sits down

in a cool hour to re
ect on the merits of the competing positions, the ra-

tional conclusion often is that there are no conclusive reasons for singling

out any of the approaches under consideration as being better than the oth-

ers. But technical practitioners do not indulge in this kind of re
ection very

often, for two reasons. First, pursuing a program of research and develop-

ment, which is an integral part of being a technical practitioner, requires

commitment, and commitment involves passion. Second, it is not feasible to

let a hundred
owers bloom here.2 Programs of computational research and

development require large resources, and resources are limited. Often, an

approach must be singled out, even if the choice cannot be determined fully

by rational consideration of the competing alternatives. Clearly, arguments

about economically forced choices involving people passionately committed

to di�erent alternatives are not likely to be calm and measured a�airs.

Forced choices are an inevitable feature of dealing with computer se-

curity, because deciding very large questions about research and develop-

ment policy is an essential part of planning ways to deal with the problems

involved. It will become clear as the discussion proceeds that computer

security problems arise because of a need to share information processing
a

2And elsewhere. For example, such an approach is infeasible in research and devel-

opment e�orts aimed at producing particle accelerators of great power, passenger rail

systems, and systems for use in the space program.

6

resources among users of very di�erent degrees of trustworthiness. No piece-

meal approach to dealing with a such a situation can succeed, and the heat

arising in technical discussions involving the forced choices required by gen-

eral approaches adds itself to that generated by con
icts of principle and

other con
icts to be described in what follows.

Another feature of technical discussions driven by forced choices is worth

noting. Of necessity, such discussions are partisan, and believing what one

is arguing for is a wonderful help in such cases. Commitment to a program

of research and development tends, in itself, to foster belief in the supe-

riority of that program over competing alternatives. If one is technically

competent and articulate, belief is likely to enhance one's e�ectiveness in

argument, which, in turn reinforces the belief, thereby leading to further

enhancement of e�ectiveness in argument, a further strengthening of belief,

greater e�ectiveness in argument, and so on. This kind of feedback process

can lead a technical community to prefer a program of research and develop-

ment over its competitors and to see the choice as being determined by the

merits of the competing programs in cases where dispassionate re
ection on

the evidence adduced in support of the community's preference leads to the

conclusion that it is insu�cient to warrant the choice.

Depending on whether a program chosen due to the sort of process just

described succeeds, in hindsight its proponents may appear to have been

either insightful or disingenuous. If the program succeeds, the reaction may

be something like \Remarkable that they were so persistent and forceful;

they must have realized the weakness of their position!", and if not, it may

run along the lines \Deplorable that they persisted so; they sold the other

parties to the discussion a bill of goods!" But if, in fact, the course of a

discussion driven by a forced choice is determined by the sort of process

described in the preceding paragraph, the proper conclusion is that the ap-

pearance of foreknowledge or chicanery, as the case may be, is an illusion.

Feedback, rather than foresight, drives the process, and it needs no assis-

tance from knavery to determine the outcome. This point must be borne in

mind in thinking about the events discussed below.

1.2 Aims and Limitations

Due to constraints on available support, the aims of the research e�ort that

resulted in writing this document were limited to producing a report that

would be informative and accurate in itself and would also furnish a sound

basis for further research devoted to the topics discussed here. A number of

7

ways in which the research done so far could, and should, be extended are

mentioned in the body of the document.

1.3 Structure of the Report

Section 2, the remaining section of part I, provides an overview of the events

discussed in parts II{IV. Part II lays out the technical context in which the

Orange Book was written. Part III describes the writing of the Orange

Book, and Part IV discusses what happened when it was used and draws

out some of the implications of the events involved.

Part V discusses how well some of the models currently used by historians

of technology �t the course of events described and analyzed in parts I{IV.

Part VI contains appendices and the report's references.

2 Overview

Subsection 2.1 is a narrative outline of the events of central concern in this

document. Subsection 2.2 is a
ashback that �lls in the context of high level

policy and politics within which the events of central concern occurred, and

subsection 2.3 rounds o� the overview by brie
y discussing recent trends

related to the events recounted in subsections 2.1 and 2.2.

2.1 Narrative, 1961{1983

It was observed in subsubsection 1.1.2 that computer security problems arise

because of a need to share information processing resources among users of

very di�erent degrees of trustworthiness. Section 3 describes how this sort

of resource sharing �rst became a prominent possibility through the intro-

duction of time-sharing operating systems, and section 4 discusses how the

security problem posed by sharing computational resources in the context of

time-sharing operating systems | the classical computer security problem3

| came to be recognized by the United States defense community.

Crudely put, the classical computer security problem amounts to saying

\How can you allow users who should be able to get at sensitive information

that's in a computer system to do it, while preventing users who shouldn't

from doing it too?" This is a hard question, because answering it requires

solving a combination of thorny technical and conceptual problems.
a

3
The terminology is drawn from [L

+
80, p. 8-25].

8

An operating system is a collection of software that controls the resources

of a computer system and provides users and programs access to those re-

sources. Solving the classical computer security problem requires �guring

out how to build appropriate operating systems, building them, and pro-

viding evidence that the resulting systems, in fact, behave as they should.

Since an operating system is a collection of software, it is clear that prospects

for solving the classical computer security problem cannot be better than

prospects for making intelligible, reliable software and showing that there is

good reason to think it reliable.

As we shall see in section 5, at approximately the same time the classical

computer security problem was recognized by the defense community, the

computer community at large became acutely conscious that prospects for

making intelligible, reliable software and providing reasonable assurance of

its reliability were very dim, given the software development techniques that

were then known and used. This situation was dubbed the \software crisis",

and the need to devise techniques for dealing with it was keenly felt by

computer professionals and sophisticated computer users. Embryonic forms

of techniques intended for this purpose were soon forthcoming. Two such

techniques had an extremely strong in
uence on planning approaches to

handling the classical computer security problem| program veri�cation and

structured programming. Sections 6 and 7 recount aspects of the origins of

these techniques that are particularly relevant to the purposes of this report.

Program veri�cation and structured programming promised to help with

the general problem of making intelligible, reliable software and providing

reasonable assurance of its reliability, but, in themselves, they provided no

information about the speci�c problems of operating system design and con-

struction peculiar to the classical computer security problem. In order to

devise a plan for dealing with the classical computer security problem, it was

necessary to produce a precise doctrine about what features an operating

system should have in order to provide information to users entitled to it,

while denying information to users who were not. Beyond this, given the

necessary doctrine, it was also necessary to invent techniques for designing

and building systems that would behave in accordance with the doctrine.

Sections 8 and 9 discuss the doctrine that was, in fact, produced by the

defense community pursuant to the need to plan a way of dealing with the

classical computer security problem, and part III includes information about

the associated design and implementation techniques and the initial period

of experimentation that provided evidence of their practical utility.

9

The developments discussed so far can be dated as follows.

Time-sharing operating systems: The �rst experimental general

purpose time-sharing system had been built and demonstrated at MIT by

November 1961 [FC71, p. 79].

Classical computer security problem: Recognized during 1967{

1972. \In October 1967, a task force was assembled . . . to address computer

security safeguards that would protect classi�ed information in remote-

access, resource-sharing systems," [NCS85b, p. 1]. This resulted in [War70],

which is always cited in the Orange Book literature as the �rst report on

the classical computer security problem. See [War70, p. vii] for detailed

information on the origins of the report.

According to [Jel85, pp. 68{69], \1967 appears to be the year when com-

puter security began to receive some o�cial attention." The same passage

notes that, in addition to the United States Department of Defense (DoD),

the Central Intelligence Agency become concerned about computer security

at this time, and the Advanced Research Projects Agency \initiated funding

for the development of the ADEPT-50, the �rst recorded general purpose

operating system designed to implement DoD security policy." [War70] and

its origins are also discussed.

Understanding of the problems involved in providing adequate security

safeguards for computer systems was deepened and clari�ed by [And72].

Software crisis: Recognized during 1967{1968. The software crisis was

a major topic at the NATO conference on software technology planned in

1967 and held at Garmisch, Germany in 1969, [NR69]. See [Sha90, pp. 100{

103].

Program veri�cation: First in
uential papers 1967, 1969. [Flo67] is

the �rst consequential paper on the subject. [Hoa69] applies the ideas of

[Flo67] to program texts, rather than
ow charts. The approach of [Hoa69]

has been very in
uential in subsequent work on program veri�cation.

Early work in the area | [GvN47] and [Tur49] | had no in
uence on

subsequent developments.4 In particular, neither [Flo67] nor [Hoa69] cites

either of [GvN47] and [Tur49].

Structured programming: Fundamental papers 1971, 1972. [Wir71]

and [Par72] are the seminal papers in the area. See [Sha90, pp. 111�.] for

discussion of the subsequent developments.

Doctrine: Developed during 1972{1973. The relevant publications are

[And72] and [BP74b]. [And72] is cited in [NCS85b, pp. 1 and 66]. [BP74b] is
a

4
I am indebted to Donald Good for these references.

10

often cited as the other main source for the essential ideas (see, for example

[Nib79a], [Lan81], and [Sch89]), though [NCS85b, p. 66] refers, instead, to

the later [BP76]. See also [BP74a, BP75].

Techniques and Experimentation: Ideas developed during 1971{

1973.

According to [Jel85, p. II-73], the ideas did not originate with the panel

that produced [And72] | the Anderson panel, but \grew out of some earlier

work at ESD [Electronic Systems Division, Air Force Systems Command]

involving Roger R. Schell." On the other hand, [Wal80, �gure 1, p. 656] gives

1973 as the year of origin for security kernels, which are the fundamental

components of the design and implementation techniques that were devised.

Interview evidence resolves this apparent con
ict | the ideas did, in-

deed, grow out of Schell's work at ESD, which began in 1971 [Scha, p. 6],

and antedated the Anderson panel, but the �rst attempt to implement the

ideas, which took place at MITRE [Sch73], [Sch75], resulted from a recom-

mendation made by the Anderson panel [Sch93b, A202-224, A321{A332].

It is clear from [Wal80, p. 655] that [Wal80, �gure 1, p. 656] refers to

the MITRE security kernel implementation e�ort, which began a period of

experimentation that continued through 1976 [Wal80, pp. 655-656], [Jel85,

p. II-74].

By 1977, the time was ripe to formulate a systematic plan for dealing

with the classical computer security problem, and the United States Depart-

ment of Defense did so forthwith. The resulting DoD Computer Security

Initiative is discussed in section 10.

An important part of the plan laid out by the DoD Computer Security

Initiative was to produce a standard for rating computer systems with regard

to security and to establish an evaluation center that would rate computer

systems according to the standard and publish the results. Section 11 de-

scribes the process that led to deciding to locate the evaluation center at the

National Security Agency (NSA), and section 12 describes how this decision

led to the formation of the DoD Computer Security Evaluation Center and

discusses the Center's5 original charter. Section 13 discusses the writing of

the Orange Book, the standard used in the Center's evaluation of computer

systems. Section 14 is a guide to sections 15{18, which discuss four aspects

of processes and products associated with the creation of the Orange Book

and the activities of the Center that have been chosen for analysis in this
a

5
From now on, I will use the phrase \the Center" to refer to both the DoD Computer

Security Evaluation Center and its descendant the National Computer Security Center.

11

report.

Dates for the developments described in the preceding two paragraphs

are the following.

DoD Computer Security Initiative: Started, 1977 [NCS85b, p. 1].

Manifesto, 1978| [L+80], described by [NCS85b, p. 1] as \a de�nitive paper

on the problems related to providing criteria for the evaluation of technical

computer security e�ectiveness." The description is correct, but there is

much more to [L+80] than a technical discussion of evaluation criteria, as

section 10 shows.

Locating the evaluation center: 1979{August 1980 [Jel85, pp. II-

78{II-81], [Wal93a]. The decisive event was a meeting between Stephen T.

Walker and Vice Admiral Bobby R. Inman, Director, NSA, that took place

on August 4, 1980.

Establishing the Center: September 1980{October 1982. [Jel85,

pp. II-81{85] recounts the astonishingly swift series of events leading from

the agreement reached by Walker and Inman on August 4, 1980 to the sign-

ing of the memorandum that established the Computer Security Evaluation

Center on January 2, 1981. [DoD82b], issued on October 25, 1982, provided

the Center with an o�cial charter.

Writing the Orange Book: 1978{1985. The technical discussion of

evaluation criteria in [L+80] is, in e�ect, the �rst stage in the writing of the

Orange Book, and [Nib79a] is the second, according to [Wal93a]. [CSE82]

is the �rst version of the �nal document produced by the Center. Revisions

led to [CSE83b] and then to [CSE83c], the �rst non-draft version of version

of the Orange Book issued by the Center. The changes made in moving

from [CSE83c] to [NCS85b] were minor.

Evaluating products: 1983{1993. Evaluations began in late 1982 or

early 1983 and were \pretty informal, at �rst," according to Bret Hartman

[Har93a]. According to [Bon93a], \evaluations" of a sort were taking place

prior to 1982. [Jel85, p. III-31], citing [CSE83a], notes that a formal eval-

uation was under way by April 15, 1983, prior to the issuance of [CSE83c].

Information about recent evaluations can be found in [NSA93a].

2.2 Flashback: High Policy and High Politics, November

1977{July 1990

The issues of policy and politics involved in the story outlined so far relate

primarily to events at or below the level of cabinet departments. The rele-

vant policy and political developments at the higher levels of the executive

12

and legislative branches of the United States Government divide naturally

into three periods.

First period: November 1977{August 1984. The salient documents are

Presidential Directive 24 (PD 24) [PD77] and the Paperwork Reduction Act

of 1980 [Con80a].

PD 24 mandated a split in responsibility for security of U.S. government

communications [Jel85, p. II-52]. DoD's long-standing responsibility for

protecting communication of information related to national security was to

continue. But responsibility for protecting communication of \government-

derived unclassi�ed information (excluding that relating to national secu-

rity)" was assigned to the Department of Commerce (DoC), along with re-

sponsibility for \dealing with the commercial and private sector to enhance

their communications protection and privacy."6

Despite its innocuous title, the Paperwork Reduction Act of 1980 \can

certainly be interpreted as mandating a rather vigorous program in COM-

PUSEC [computer security] within the U.S. government" [Jel85, p. II-91],

with the O�ce of Management and Budget (OMB) having high-level re-

sponsibility for the program in question. In fact, the Act was so interpreted

by the General Accounting O�ce [Jel85, p. II-91] and others.7

Responsibility for computer security within DoD was shortly to be given

to NSA, with the Center having primary responsibility for the conduct of

NSA's program activities in the area [DoD82b]. Since the Paperwork Reduc-

tion Act of 1980 was interpreted as requiring a computer security program

for the government as a whole, and NSA's computer security activities were

con�ned to DoD, the e�ect of the Act was to split responsibility for com-

puter security along roughly the same lines as the split in responsibility for

communication security instituted by PD 24. But there was a signi�cant

di�erence | PD 24 at least assigned responsibility for non-DoD communi-

cation security to a de�nite cabinet department, DoC, but no assignment of

responsibility for non-DoD computer security at a similar level was estab-

lished by the Paperwork Reduction Act of 1980.

As events unfolded in the period currently under discussion, the orga-

nization formed by DoC to discharge its responsibility for communication

security, the National Telecommunications and Information Administration,

proved to be unsuccessful and short-lived [Jel85, pp II-55{II-66], and no
a

6
The quotations are as given in [Jel85, p. II-52] and are from from [PD77, p. 4].

7
\Security guidance for Federal automated information systems is provided by the

O�ce of Management and Budget," [CSE83c, p. 70] and [NCS85b, p. 72].

13

organization was charged with actually doing something about non-DoD

computer security. Not to put too �ne a point on it, the result was that,

although DoD needs were being seen to, by 1984 the overall situation of the

U.S. government, as regards both communication security and computer

security, was a mess [Jel85, chapter 7].

Second period: September 1984{December 1987. The point of Na-

tional Security Decision Directive 145 (NSDD 145) [NSD84] and National

Telecommunications and Information Systems Security Policy 2 (NTISSP 2,

the Poindexter memorandum) [SSS86] was to do something about the mess.

NSDD 145 uni�ed high-level responsibility for communication security

and computer security by forming the National Telecommunications and In-

formation Systems Security Committee (NTISSC) to formulate operational

policy for both. Top-level responsibility for carrying out policies formu-

lated by NTISSC was assigned to the Secretary of Defense, acting in the

newly created capacity of Executive Agent of the Government for Telecom-

munications and Information Systems Security. In turn, the Director, NSA,

was designated National Manager for Telecommunications Security and Au-

tomated Information Systems Security, and was given broad powers to act

under the authority of the Secretary of Defense in prosecuting NTISSC poli-

cies. A Systems Security Steering Group was also instituted to have general

oversight of the structure so far described and to inform the President about

its performance via the National Security Council.

One positive e�ect of this structure was to give NSA full scope to apply

its technical capabilities to the general problem of seeing to communication

and computer security throughout the government. But the Agency8 needed

guidance as to how those capabilities were to be employed | in particular,

the kinds of information that were to be protected had to be de�ned, and

it had to be determined who would apply the de�nition to the individual

communication systems over which information was transmitted and the in-

dividual computer systems in which information resided and was processed.

The job of NTISSP 2 was to spell this out. In particular, the job of NTISSP

2 was to spell it out for \sensitive, but unclassi�ed information", as the

document's title indicates [SSS86].

\Sensitive, but unclassi�ed information" was de�ned by NTISSP 2 as

follows [Rep87a, p. 39]:

Sensitive, but unclassi�ed information is information the dis-

closure, loss, misuse, alteration, or destruction of which could
a

8
From now on, I will use the phrase \the Agency" to refer to NSA.

14

adversely a�ect national security or other Federal Government

interests. National security interests are those unclassi�ed mat-

ters that relate to the national defense or the foreign relations

of the U.S. Government. Other government interests are those

related, but not limited to the the wide range of government

or government-derived economic, human, �nancial, industrial,

agricultural, technological, and law enforcement information, as

well as the privacy or con�dentiality of personal or commercial

proprietary information provided to the U.S. Government by its

citizens.

Responsibility for applying this de�nition was assigned to the heads of the

government's various departments and agencies [ibid.]:

This policy assigns to the heads of the Federal Government

Departments and Agencies the responsibility to determine what

information is sensitive, but unclassi�ed and to provide systems

protection of such information which is stored on telecommuni-

cations and automated information systems.

And the following duties were assigned to the Director, NSA, acting in the

new capacity created by NSDD 145 [Rep87a, p. 40]:

The National Manager shall, when requested, assist the Fed-

eral Government Departments and Agencies to assess the threat

to and vulnerability of targeted systems, to identify and docu-

ment their telecommunications and automated information sys-

tems and protection needs, and to develop the necessary security

architectures.

Falling between the institution by NSDD 145 of changes in NSA's overall

role in the Government and the signing of NTISSP 2 were some changes in

NSA's internal structure. In December 1985 the Agency's computer security

and communication security programs were \merged . . . into an integrated

organization called Information Security" [NSA86], and, concomitantly, the

DoD Computer Security Evaluation Center became the National Computer

Security Center.

These changes harmonized NSA's internal structure with its expanded

external role and gave the Center a more imposing name, but they entailed

retreating from one of the basic principles agreed to by Walker and Inman

when the Center was formed, namely, that it should be independent of the

15

Agency's communication security program [Wal93a], [Jel85, pp. II-81{II-83].

Nevertheless, pace Walker and Inman, NSDD 145's uni�cation of computer

security and communication security under the policy and administrative

structure the Directive brought into being led directly to corresponding

changes in NSA's structure [NSA86]:

The responsibilities of the new organization [Information Se-

curity] are being broadened under the auspices of National Se-

curity Decision Directive 145 to include all computer security

and communication security for the Federal Government and

private industry, including the protection of classi�ed informa-

tion; unclassi�ed, national security sensitive information; and

non-national security sensitive information. This broadening of

responsibility was requested by the Department of Treasury and

approved on December 20th [1985] at a meeting of the [Systems]

Security Steering Group that was organized under NSDD 145.

Organizational changes at NSA weren't the sort of stu� of which national

political issues are made, but the changes in top level Government policy

and structure that brought them about were. NSDD 145 itself caused polit-

ical rumblings. Congressman Jack Brooks, for example, reacted as follows

[Bro85]:

I believe that NSDD 145 is one of the most ill-advised and

potentially troublesome directives ever issued by a President.

The addition of NTISSP 2, together with visits to libraries and �rms provid-

ing database services by various Federal agents acting pursuant to and/or

concurrently with implementation of NSDD 145 and NTISSP 2 [Rep87b,

Rep87a], produced a full-blown Congressional tempest that swept away

NTISSP 2 just four and one half months after its issuance [Car87a], shook

the administrative structure instituted by NSDD 145 [Car87b], and left a

new piece of legislation in its wake.

Third period: January 1988{July 1990. The Computer Security Act of

1987 [Con88] assigned to the National Bureau of Standards (NBS) | sub-

sequently the National Institute of Standards and Technology (NIST) |

responsibility for producing computer security standards and guidelines ap-

plicable to Federal computer systems other than those that handle classi�ed

information. The Act let stand NSA's responsibility for the corresponding

functions regarding Federal computer systems that process classi�ed infor-

mation and mandated close cooperation and resource sharing between the

16

two agencies. Although the Act does not explicitly mention communication

security, it is interpreted as providing for a similar cooperative division of

responsibility in that area [Rep92, p. 3].

To promulgate a law is one thing, to obtain compliance another. Ob-

taining compliance with the Computer Security Act of 1987 involved seeing

to it that the planning, training, and standards making activities required

by the Act proceeded satisfactorily, on the one hand, and making sure that

NSDD 145 was revised to bring Executive Branch policies into line with the

Act's provisions, on the other. Congress kept close watch on both aspects

of the compliance problem [Rep89, Rep90, Rep91, Rep92].

Harmonization of Executive Branch policy with the Computer Security

Act of 1987 was achieved by the signing on July 5, 1990 of a National Se-

curity Policy Directive that removed the features of the policy instituted by

NSDD 145 that were inconsistent with the Act's provisions [Rep90, p. 61],

[SPD90], [Dan90a]. Simultaneously, NSA's internal structure was again al-

tered [Dan90c, Dan90b] by fully integrating the computer security and com-

munication security aspects of the Agency's Information Security organiza-

tion, thereby completing the the process begun in the 1985 reorganization

and moving the Center still further from the form originally intended by

Walker and Inman.

2.3 Recent Trends

Viewed historically, consideration of what happened after July 1990 brings

the overview given in this section to current events. The remainder of the

section brie
y discusses recent trends.

In the short term, the e�ect on computer security of the Computer Secu-

rity Act of 1987 was probably negative. But the Act made excellent political

sense, in the deepest sense of the word \politics" | the principle that civil-

ian authorities control the military, and not the other way around, is so

deeply established in American law, beginning with the Constitution, and

in American political tradition that the scheme embodied in NSDD 145 and

NTISSP 2 was almost certain to fall apart eventually. Very likely, sooner

was better than later would have been.

Be that as it may, reports of the Center's death [Dan90c, Dan90b] turned

out to be greatly exaggerated | its structure may have been hidden almost

completely by NSA's traditional mantle of secrecy, but, as far as function

is concerned, the Center seemingly just keeps rolling along, chthonian, per-

haps, but enduring. (See sections 15 and 16.)

17

The cooperation between NSA and NIST mandated by the Computer

Security Act of 1987 has been su�ciently vigorous to produce the draft Fed-

eral Criteria for Information Technology Security [NIS92a, NIS92b]. And

there is more cooperation to come, much more, and not just between the

Agency and NIST [NIS93, pp. 507-508]:

The United States, Canada, and the European Community have

agreed to work together to develop the Common Criteria (CC)

which will harmonize all the existing criteria. This e�ort is ex-

pected to begin in early fall of 1993 and be completed in the

spring of 1994.[!] Speci�c inputs include: 1) the Information

Technology Security Evaluation Criteria (ITSEC)9 and the ex-

perience gained to date with ITSEC in the form of suggested im-

provements; 2) the Canadian Trusted Computer Product Eval-

uation Criteria (CTCPEC);10 [3)] the draft Federal Criteria for

Information Technology (FC) and the comments received on the

draft FC document, including the results of the FC invitational

workshop; and 4) the Trusted Computer System Evaluation Cri-

teria (TCSEC) and experience gained over the past ten years in

conducting trusted product evaluations. The resulting CC will

then undergo extensive international review and testing before

becoming an international standard.

a

9
Author's note: [EC91].

10
Authors note: [CSS89].

18

Part II

19

20

3 Time-sharing

In the bad old days [FC71, p. 79]:11

The large, expensive computing machines had become far re-

moved from their users, both in time and distance. An applicant

in e�ect had to deliver his problem or program to a reception-

ist and then wait hours or sometimes days for an answer that

might take the machine only seconds or even less time to pro-

duce. The computer, working on one program at a time, kept

queue of users waiting for their turn. If, as commonly happens, a

submitted program contained a minor error that invalidated the

results, the user often had to wait several hours for resubmission

of his corrected program.

Time-sharing changed all that. To begin with, it provided \a means of

allowing fuller use of the machine by more people and of saving time for

the users" by making it e�ectively possible for a computer to work on many

programs at the same time [ibid.]

And there was more. Although \At �rst thought time-sharing seems

simply a convenience . . . It has created an unexpected new order of uses for

the computer" [ibid.] Taken together with the development of peripherals,

such as terminals and on-line random access storage devices, needed to take

advantage of the new capabilities inherent in time-sharing, the development

of collections of application programs and utilities available on-line to system

users, and the development of operating systems to manage these resources,

the e�ect was to transform computers into a new kind of machine.

Certainly, the relationship of the users of a computer system to the

system and each other was new [FC71, pp. 86{87]:

In a sense the system [i.e., M.I.T.'s Compatible Time-Sharing

System (CTSS)] and its users have developed like a growing or-

ganism. Most striking is the way the users have built on one

another's work and become dependent on the machine. . . . in

conventional computer installations [without time-sharing] one
a

11
R. M. Fano and F. J. Corbat�o, authors of [FC71], were time-sharing pioneers [FW71,

pp. 272{273].

21

hardly ever makes use of a program developed by another user,

because of the di�culty of exchanging programs and data . . .

� � �

All in all, the mass memories of our machines are becoming

more and more like a community library.

Remarkable things were being done, and still more remarkable things

could be foreseen [FC71, p. 87]:

The facility actually goes beyond a library's usual services. It

already has a rudimentary mechanism whereby one person can

communicate with another through a program in real time . . .

it does not take a long stretch of the imagination to envision an

entire business organization making and executing all its major

decisions with the aid of a time-shared computing system. In

such a system the mass memory at all times would contain an

up-to-date description of the business.

4 The Classical Computer Security Problem

Businesses weren't the only organizations that might take advantage of the

possibilities opened up by time-sharing | it didn't take a long stretch of the

imagination to envision an entire military organization making and execut-

ing all its major decisions with the aid of a time-shared computing system,

and the imaginations of the American military services and Department of

Defense were equal to the task. But there was a problem, and it was serious.

In order to take full advantage of the possibilities o�ered by the new

technology, it would be necessary to have classi�ed information of two or

more security levels on systems where some users were not cleared for at least

one of the levels present.12 In September 1966, when [FC71] was originally

published in Scienti�c American, nobody had any idea how to combine

information of di�ering security levels with users of di�ering clearances on a

single time-sharing system and have any real assurance that users could not

gain access to information for which they were not cleared. It does not take

a long stretch of the imagination to see why persons and organizations duty

bound to support and defend the Constitution of the United States against
a

12
Classi�cation, security levels, and clearances are discussed in subsection 9.1.

22

all enemies, foreign and domestic,13 would require such assurance for Top

Secret information [CSE85c, p. 29]:

. . . information, the unauthorized disclosure of which reasonably

could be expected to cause exceptionally grave damage to the

national security.

Secret information [ibid.]:

. . . information, the unauthorized disclosure of which reasonably

could be expected to cause serious damage to the national secu-

rity.

and even Con�dential information [ibid.]:

. . . information, the unauthorized disclosure of which reasonably

could be expected to cause damage to the national security.

Without doubt, there were foreign enemies, and there had been cases

[Bam82, pp. 133{154] in which, despite even NSA's stringent vetting proce-

dures [Bam82, pp. 118{130], their minions had obtained clearances permit-

ting access to extremely sensitive information. This showed that the system

of classi�cations and clearances was not foolproof, even if the prospective

technology enabled by time-sharing systems was not involved. But it was an

essential component of the only established way of preventing unauthorized

disclosure of sensitive information, and to undertake the envisioned trans-

formation of the military's methods for dealing with information without

extending the scheme of classi�cations and clearances to that context was

unthinkable. Furthermore, the di�erence between applying the classi�ca-

tion/clearance system to information held in paper �les and applying it to

information held in a time-sharing computer system was radical.

For many people, the thought of having access to sensitive information

conjures up something like an image of John Le Carr�e's character George

Smiley | than whom no one is more highly cleared | engaged in a mole

hunt, legitimately delving into paper �les stamped with labels denoting the

most rare�ed security levels.14
a

13
All members of the armed forces of the United States have such a duty, undertaken

at the time of their induction [Arm59], [Arm90, p. 123].
14
An American analog of this example can be produced by imagining a similar situation

involving Charles McCarry's character Paul Christopher, Smiley's approximate peer in the

�ctional security services of the United States. But Smiley is a better case for the example

given in the text | the United Kingdom leads the world in spy �ction, both as regards

quality and as regards renown.

23

Besides adequate lighting, the only instrumentalities Smiley requires as

he digs through �les are his glasses. Smiley can be certain that simply

looking through his glasses at the papers he is reading will not transmit

the information written on the documents to somebody in the employ of

his Soviet opposite number, Karla. But, most emphatically, he could not

be certain that \simply reading a �le" would not have such an e�ect, were

he working with \�les" held in a time-sharing computer system. In the

latter case, Smiley would be able to \read" such a \�le" only by invoking a

program that caused the information contained in the \�le" to be displayed

by an output device, and the program might do this and more | it might

also, either by design or by accident, transmit the information to a \�le"

that could be \read" by one of Karla's agents.15

A program written with the malicious intention of causing the kind of be-

havior described in the preceding paragraph is called a Trojan horse. There

are other possibilities for writing software that can have malign e�ects. For

example, software that behaves benignly in ordinary circumstances may

contain a trap door | a hidden mechanism, activated in some seemingly

innocent way, that causes the software's behavior to become malignant.16;17

Smiley, apparently living in a low tech world, doesn't have to worry

about Trojan horses and trap doors, but, still, there is more to be learned by

considering what he doesn't do. Despite his stratospheric clearance, Smiley

doesn't go digging through �les down in Registry unless his need to know

what's in them has been established.

This is a case of art imitating life that applies as well on the west side

of the Atlantic as on the east. According to long-standing Department of

Defense policy for handling sensitive information, being cleared for informa-

tion classi�ed at a given security level is a necessary condition for having

authorized access to that information, but, by itself, the clearance is not a

su�cient condition for having authorized access to the information. Accord-
a

15
The example and my understanding of the point it makes grew out of thinking about

material from [McC93, A270{A319 and A456{A486].
16
As [NCS88b, p. 48] makes clear, mechanisms embedded in hardware may also be trap

doors.

17
Trap doors were genuine worry for the Air Force during the early to middle 1960's

[Sch93b, A060{A091], because of the fear that someone might use a trap door to enable an

unauthorized ballistic missile launch. One of the e�ects of this was that \You didn't use

commercial software on those machines in any way, shape, or form." But that didn't solve

the problem | someone on the programming sta�, despite being a member of the Air

Force, might still \for whatever reason" use malicious software to cause an unauthorized

launch.

24

ing to [DoD82a] as quoted in [NCS85b, p. 76], for example:

. . . no person may have access to classi�ed information unless

. . . access is necessary for the performance of o�cial duties.

To have authorized access to sensitive information requires both a high

enough clearance and a need to know. Thus, in order to extend standard

military methods for handling sensitive information to the context of time-

sharing computer systems, it was necessary to devise policies, procedures,

and mechanisms that would give appropriate expression to both the prin-

ciples underlying the classi�cation/clearance system and the need to know

principle.18

Taken together, the Ware and Anderson reports [War70, And72] gave a

clear statement of the basic problems discussed in this section19 and located

the crucial technical area in which progress had to be made in order to solve

them | operating systems, the collections of software that control computer

system resources and provide users, utilities, and application programs ac-

cess to those resources, including access to �les and input/output devices,

which is crucial to the problems under discussion.

If, following [Lan81, p. 247], we say that a computer system's mode of

operation is multilevel if some information in the system has a security level

higher than the clearances of some of the system's users, then the classical

computer security problem can be characterized as the problem of building

time-sharing operating systems that, when operating in multilevel mode,

appropriately implement the principles of the security level/clearance system

and the need to know principle. More succinctly put, the classical computer

security problem is the problem of building multilevel secure time-sharing

operating systems.

a

18
There is a good deal more to military security practices than the system of classi�ca-

tions and clearances and the need to know principle, though these are the features that

are of primary concern in computer security. For a general discussion of military security

and other aspects of its relation to computer security, see [Lan81, pp. 248{253].
19
On the subject of trap doors, see, for example, [War70, p. 8]. The relevant usage

of the phrase \Trojan horse" was introduced by D. J. Edwards during the writing of

[And72]. (See the note found in [And72, Vol. II, Appendix II, p. 62]. I am indebted to

Carl Landwehr for this reference, which corrects [Lan81, note 2, p. 252].)

It should be noted that, although the Ware report received \its impetus from the con-

cern that has been generated by the increasing number of time-sharing systems" [War70,

p. xii], both the Ware and the Anderson reports address the more general topic of security

safeguards for resource-sharing computer systems, as described in [War70, Introduction

and pp. 1{3].

25

5 The Software Crisis

Characterization of the problem that needed to be solved in order to allow

the hoped for transformation of the military's methods of handling infor-

mation was a notable achievement, but the characterization provided very

little comfort.

According to [NCS85b, p. 1], the work that resulted in the Ware report

began in October 1967. Assessing the state of computing technology was

in fashion that fall. In late 1967, the NATO Science Committee began an

e�ort aimed at assessing the �eld as a whole by forming a Study Group on

Computer Science.20 The �rst concrete result of the Study Group's activities

was a conference on software engineering held in Garmisch, Germany in

October of 1968. It became abundantly clear at the conference that, even

neglecting the problem of time-sharing and security that was the province of

the Ware panel, the state of the art in production of large software systems

was, in general, not good and was very bad indeed in the case of operating

systems.

Few attending the Garmisch converence disagreed with E. E. David of

Bell Labs when he said [NR69, p. 67]:

. . . production of large software has become a scare item for

management. By reputation it is often an unpro�table morass,

costly and unending. This reputation is perhaps deserved. No

less a person than T. J. Watson said that OS/360 cost IBM over

50 million dollars a year during its preparation, and at least 5000

man-years' investment. TSS/360 is said to be in the 1000 man-

year category . . . The commitment to many software projects

has been withdrawn. This is indeed a frightening picture.

David's jeremiad continued [NR69, pp. 68{69]:

. . . the uninitiated sometimes assume that the word `scale' refers

entirely to the size of code . . . This dimension is indeed a con-

tributory factor to the magnitude of the problems, but there are

others. One of increasing importance is the number of di�er-

ent, non-identical situations which the software must �t. Such
a

20
The date for the formation of the Study Group is taken from [Sha90, p. 100], and

the remainder of this section follows the account of [Sha90, pp. 100{102] very closely.

In particular, it should be noted that quotations from [NR69] are as given in [Sha90,

pp. 100{102].

26

demands complicate the tasks of software design and implemen-

tation, since an individually programmed system for each case is

impractical.

and continued further [NR69, p. 69]:

. . . there is no theory which enables us to calculate limits on the

size, performance, or complexity of software. There is, in many

instances, no way even to specify in a logically tight way what

the software product is supposed to do or how it is supposed to

do it.

There was some disagreement over whether the software situation really

merited the name \crisis" [Sha90, pp. 100-101], but it was agreed that the

there were serious problems with software and that, as far as underlying

causes were concerned [NR69, p. 122]:

. . . a basic one lies in the unfortunate telescoping of research,

development and production of an operational version within a

single project e�ort. This practice leads to slipped schedules,

extensive rewriting, much lost e�ort, large numbers of bugs, and

an in
exible and unwieldy product.

J. W. Smith observed that there was a tendency among designers to \use

fuzzy terms like `elegant' or `powerful' or `
exible'" [NR69, p. 38], and con-

tinued by saying:

Designers do not describe how the design works, or the way it

may be used, or the way it would operate. What is lacking

is discipline, which is caused by people falling back on fuzzy

concepts . . . Also designers don't seem to realize what mental

processes they go through when they design. Later they can

neither explain, nor justify, or even rationalize, the processes

they used to build a particular system.

Even assuming it possible to devise a reasonable scheme for dealing with

the problems peculiar to computer security the Ware panel was examining,

it would be impossible to build multilevel secure time-sharing operating sys-

tems and be assured of their security if signi�cant progress was not made in

the direction of dealing with the general problems of large software systems

responsible for the urgent tone of the Garmisch conference's proceedings.

27

Two salient points emerged from what had been said there: (1) precise

concepts and exact methods for use in specifying software systems and de-

scribing and predicting their behavior were needed, and (2) so were better

techniques for desigining software systems and organizing the process of

designing, building, and maintaining them.

6 Program Veri�cation

If precise concepts and exact methods were wanted, it seemed reasonable to

think they might be found in logic. It had seemed so to Floyd [Flo67], and

it certainly seemed so to C. A. R. Hoare, who built on Floyd's work [Hoa69].

The introduction to Hoare's paper setting out the calculus he devised with

the aim of exploring the \logical foundations of computer programming"

[Hoa69, p. 576] began as follows:

Computer programming is an exact science in that all the

properties of a program and all the consequences of executing it

in any given environment can, in principle, be found out from the

text of the program itself by means of purely deductive reasoning.

This was a visionary statement, and the vision it expressed was shared by

others.

Donald Good, for example, in 1967 a graduate student in computer

science at the University of Wisconsin, Madison, had been working in a

branch of numerical analysis called interval analysis. And then one day

[Goo91a, tpt, p. 1]:

. . . it dawned on me that \Gee! All this mathematics isn't

worth anything unless the program works right", and that's what

brought me into [program veri�cation].

After �nding out that there was nothing he could \just go out and buy and

use [to verify programs] and be on my way [in numerical analysis]" [ibid.],

being introduced to Floyd's ideas via a draft version of [Flo67] given to him

by one of the faculty, Ralph London, and publishing a paper with London

as a result of joint work based on what Floyd had done [ibid., pp. 1{2], \I

switched my graduate work from numerical analysis to working in [program

veri�cation], right at the time when I did my dissertaion" [ibid.].

28

Thus, Good had enough con�dence in the vision articulated by Hoare to

switch from numerical analysis, an established �eld, to program veri�cation,

a brand new one, when he began work on his dissertation. A switch of this

kind isn't made unless the person making it thinks the new �eld is going

somewhere, going somewhere interesting and important.

More will be said below about the work Good's change of direction led

him into and how it became enmeshed in DoD's e�ort to solve the classical

computer security problem. As for Hoare, careful reading of [Hoa69] is

enough to show asserting that computer programming is an exact science

was easier than backing up the claim was going to be.

In the paragraph immediately following the one that began with the

clarion sentence quoted above, it became clear that subtlety would be needed

in achieving the wanted exactitude [Hoa69, p. 576]:

Unfortunately, in several respects computer arithmetic is not

the same as the arithmetic familiar to mathematicians, and it is

necessary to exercise some care in selecting an appropriate set of

axioms [about the elementary arithmetic operations a program

may invoke].

The main di�erence between computer arithmetic and ordinary arith-

metic is, as Hoare observed [ibid.], that the familiar number systems | e.g.,

the natural numbers and integers21 | are in�nite, but computers and, a

fortiori, the sets of numbers represented in them are �nite. Hoare [ibid.]

proposed some candidate axioms for characterizing various ways the �nite

sets of natural numbers represented in computers might behave, and there

certainly seemed to be no reason this could not be done for integers, rational

numbers,22 and so on. But the situation was worrisome. Much of the power

of mathematics would be lost, because many familiar theorems would not

apply in the setting provided by such axioms, and, even ignoring that, the

resulting axioms might be very tricky to deal with.23

Moving from problems of computer arithmetic to the main business of

the paper, explaining the calculus intended to help make programming an
a

21
The natural numbers are the non-negative whole numbers 0, 1, 2, 3, . . . The integers

are the natural numbers together with the negative whole numbers . . . , -3, -2, -1.
22
Rational numbers are those represented by fractions that have integers as numerators

and integers di�erent from 0 as denominators.
23

They were tricky enough to trip up Hoare himself | candidate axiom A11S [Hoa69,

p. 576] is the negation of a theorem of classical �rst order predicate logic with identity

[Men79], which seems to be the underlying logical system Hoare had in mind.

29

exact science, Hoare began with the assignment operator, which is used

to change values of program variables.24 He prepared the reader for the

statement of the calculus's assignment axiom by saying [Hoa69, p. 577]:

Assignment is undoubtedly the most characteristic feature of

programming a digital computer,25 and one that most clearly

distinguishes it from other branches of mathematics.26 It is sur-

prising therefore that the axiom governing our reasoning about

assignment is quite as simple as any to be found in elementary

logic.

This was good news, but it wasn't all the news. The formal preamble

of the axiom's statement, which expressed the conditions under which the

axiom could be used, ran as follows [ibid.]:

Consider the assignment statement:27

x := f

where

x is an identi�er for a simple variable;

f is an expression of a programming language without side

e�ects [emphasis added], but possibly containing x.

The statement of the axiom followed this in Hoare's text, but, as far as

the issues under discussion here are concerned, it need not be gone into.

The trouble with Hoare's treatment of assignment, considered as part of an

attempt to show that programming is an exact science, was that, contrary

to the emphasized phrase in the last clause of the axiom's preamble, there
a

24
The assignment operator, :=, is the main operator in commands of the form x := f ,

where x is the name of a program variable and f is an expression with values of a type
appropriate to the variable named by x. On encountering such a command, the machine

attempts to compute the value of f and then make it the value of the variable named by

x.
25Author's note: A reasonable assertion in 1969, but less so now. See note 28.
26Author's note: Note the implicit assertion that programming is a branch of mathe-

matics.
27Author's note: See note 24 for an explanation of the notation x := f that follows in

Hoare's text.

Hoare calls x := f a statement, which is a standard, but unfortunate, usage in speak-
ing about programming languages. Since the notation has imperatival force (it tells the

machine to do something), it is better to call x := f a command, as in note 24.

30

weren't any programming languages without side e�ects.28 Moreover, al-

though Hoare did not note the problem, in order for his assignment axiom

to hold, aliasing29 had to be ruled out as well, and there were no languages

in which this was done.

There are other doubtful points in the text of [Hoa69], but to consider

them in detail would be otiose. The computer arithmetic and assignment

axiom examples are su�cient to point up a tension in Hoare's thinking that

is symptomatic of a general tension inherent in the program veri�cation en-

terprise. On the one hand, realism demands recognition of the fact that

computers are not abstract entities, obeying the powerful and familiar laws

of mathematics. On the other, the aim of demonstrating program correct-

ness demands treating computers as if they were subject to mathematical

laws, laws perhaps novel but, nevertheless, elegant and powerful.

Tensions of this kind are not unique to program veri�cation, and they are

not necessarily fatal to �elds of endeavor that are subject to them. Aeronau-

tical engineers, for example, have had impressive success in building aircraft,

despite the fact that viscous and turbulent
ows resist mathematical treat-

ment and despite use of mathematical models that involve considering wings

of in�nite length and other unlikely objects [Vin90, chapter 2].30 But the

tension present in program veri�cation does argue strongly against accepting

the notion that computer programming is an exact science and supposing
a

28 A side e�ect is a change in the value of a program variable that occurs as a result
of computing the value of some expression used in the program. A case where program-

mers sometimes introduce side e�ects on purpose provides a good example. In dealing

with stacks, it is fairly common to use a function pop written so that computing pop(s)
both (1) returns the element that is at top of the stack s prior to the computation and

(2) removes the element in question from s, thereby causing a side e�ect.

Purely functional languages, which do not involve side e�ects, have been developed
since Hoare wrote the paper under discussion [Tur85, Tur86, Tur87a, HF92, H+92], but

they are so di�erent from the languages Hoare had in mind when he devised the calculus

of [Hoa69] that the assignment operator is not part of their apparatus. The question of
using functional languages to write operating systems has been considered [Hen82, Sto86,

Tur87b, Tur90], but, so far, only as a research problem.
29Aliasing occurs in a program context where two variable names refer to the same

program variable. For examples that show why aliasing makes straightforward use of

Hoare's assignment axiom impossible, see [Ten91].
30[Vin90, p. 167] characterizes the problems of turbulent
ow as \ubiquitous but still

scienti�cally intractable," and observes in the accompanying note 103, p. 302, that \an

especially important example [of turbulent
ow], evident in ancient times but still unsolved

in a basic scienti�c sense, is that of
ow in a pipe in most conditions of practical operation
. . . " Evidently, in some cases engineers must get along for a very long time without

adequate models of phenomena that are of fundamental concern to them.

31

that, by itself, program veri�cation is going to solve \the software problem".

It seems that, on sitting down in a cool hour in 1969 or 1970, it should

have been possible to see this. But sitting down in a cool hour wasn't what

people were into during the late 60's and early 70's, even people primarily

concerned with operating systems, software, and computer security [Sch93b,

A554{A564]:

. . . in the later 60's, a system which I was the system engineer for

. . . dealt with very sensitive information, having selected things

retrieved from it and passsed into less sensitive systems. And

this . . . was in a wartime . . . environment, where people really

. . . were dying as a result of the consequences of this. And it's a

place where I probably �rst most directly saw what people would

regard as a signi�cant part of the computer security problem.

Operating systems, software, and computer security presented serious prob-

lems, as did much else, and people wanted to do something about them.

7 Structured Programming and Design Veri�ca-

tion

David Parnas [Par72] wanted to do something about the problem of improv-

ing techniques for designing software systems and organizing the process of

designing and building them. In particular, he wanted to do something

about the problem of saying what software modules, connected program

segments that were used as subassemblies in building up a whole software

system, were supposed to do.

Although Hoare had said nothing about the matter in [Hoa69], it could

be argued that his enterprise was, with regard to actual application of the

calculus for proving theorems about program code, dependent on the success

of enterprises like Parnas's. In order to apply the calculus, one had to know

which theorems to prove, and that would be determined by a statement of

what the code was supposed to do | by a speci�cation.

It was becoming clear that process of designing and building software

systems required looking at systems from the di�erent vantage points pro-

vided by a hierarchy of system descriptions, with more abstract descriptions

32

occupying higher levels than those that were less abstract.31 In this hi-

erarchy, program code occupied the level just below the level Parnas was

concerned with, and the kinds of theorems Hoare wanted to prove would

connect the two.

The point of the theorems Hoare had in view was to provide assurance

that the code did what the speci�cation said it should, and the same was true

of traditional software tests. So these assurance techniques were intended

to provide a connection running from the code level to the more abstract

speci�cation level.

Of course, before assurance techniques that established a connection

running from the code level to the speci�cation level could be brought into

play, it was necessary to proceed from the higher level of abstraction to the

lower by writing the code. Indeed, it was necessary to write the code if a

system was to be built at all, and the primary function of speci�cations was

to guide the code writing process.

It should be clear from the foregoing that the problem Parnas was con-

cerned with was of great importance both for the general enterprise of build-

ing software systems and for the speci�c enterprise of building multilevel

secure time-sharing operating systems. Moreover, the Ware panel had as-

serted \Probably the most serious risk in system software is incomplete

design" [War70, p. 8], and this was borne out by the \tiger team" pene-

tration studies undertaken by DoD in the early 70's to assesss the security

of available computer systems [Jel85, pp. II-70{II-71], [Sch93b]. The tiger

team studies furnished convincing evidence that multilevel security couldn't

be achieved through a \penetrate and patch" approach.

Correct design was essential for security, and correct speci�cation was

essential for correct design. Therefore, solving the problem Parnas was

concerned with was of crucial importance in attempting to solve the classical

computer security problem.

Parnas described his goals brie
y as follows [Par72, abstract, p. 330]:

This paper presents an approach to writing speci�cations for

parts of software systems. The main goal is to provide spec-

i�cations su�ciently precise and complete that other pieces of

software can be written to interact with the piece speci�ed with-

out additional information. The secondary goal is to include in
a

31Dijkstra had advocated this as a way of dealing with the problems that animated the

Garmisch conference [Dij69], and the general features of his view were gaining widespread

acceptance.

33

the speci�cation no more information than necessary to meet the

�rst goal.

Giving a more detailed statement of his goals, Parnas broke them down

into a four item list. The beginning of item three is of salient interest for

the purposes of the present document [Par72, p. 330]:

3. The speci�cation must be su�ciently formal that it can con-

ceivably be machine tested for consistency, completeness (in the

sense of de�ning the outcome of all possible uses [of the module

speci�ed]) and other desirable properties of a speci�cation.

Later in the paper, under the heading \Using the Speci�cations," Par-

nas explained what he meant by saying speci�cations should be machine

testable. Ultimately, the ideas involved in the explanation became an es-

sential part of the Orange Book proof requirements. The passage is worth

quoting at length [Par72, pp. 334{335]:

Our aim has been to produce speci�cations which are in a real

sense just as testable as programs. We will gain the most in our

system building abilities if we have a technique for usage of the

speci�cations which involves testing the speci�cations long be-

fore the programs speci�ed are produced. The statements being

made at this level are precise enough that we should not have to

wait for a lower level representation in order to �nd the errors.

Such speci�cations are at least as demanding of precision as

are programs; they may well be as complex as some programs.

Thus they are as likely to be in error. Because speci�cations

cannot be \run," we may be tempted to postpone their testing

until we have programs and can run them. For many reasons

such an approach is wrong.

We are able to test such speci�cations because they provide

us with a set of axioms for a formal deductive scheme. As a

result, we may be able to prove certain \theorems" about our

speci�cations. . . .

By asking the proper set of . . . questions, the \correctness"

of a set of speci�cations may be veri�ed. The choice of the

questions, therefore the meaning of \correctness," is dependent

on the nature of the object being speci�ed.

34

Parnas did not insist on the use of machines in verifying speci�cations, but

he did regard it as essential that \system builders develop the habit of

verifying the speci�cations whether by machine or by hand before building

and debugging the programs" [Par72, p. 335].

Parnas's ideas o�ered hope for a solution to the problem of ensuring

design correctness. But there were also reasons for caution.32

First, as in the case of Hoare's program veri�cation scheme, application

of Parnas's idea of verifying speci�cations | an essential part of what came

to be called design veri�cation | required a way of deciding which theorems

to prove. That would a require a level of system description more abstract

than the speci�cation level, and if, in turn, things worked out so that an-

other level was required beyond that, and so forth, speci�cation veri�cation,

and, more generally, design veri�cation, would be revealed as chimeras. An

inde�nite piling up of levels of abstraction had to be avoided.

Second, the tension between realism and the need for elegant and pow-

erful laws for use in proofs did not vanish in moving from the setting of

program veri�cation to the more abstract situation involved in design veri-

�cation. If, on the one hand, the machine's �nitude was taken into account,

the resulting inability to apply familiar mathematical laws might make it

impossible to prove the desired theorems. And if, on the other, such consid-

erations were ignored, the theorems might provide false assurance of design

correctness, which would be very bad thing indeed | living in a fool's par-

adise wouldn't do much to promote the general goal of building of better

computer systems and certainly wouldn't lead to building computer systems

that were secure.

It remained to be seen whether these di�culties could be overcome, but,

as things turned out, impressive resources would be put into trying the

experiment.

8 Security Kernels and the Reference Monitor

Concept

At about the time Parnas was writing [Par72], the United States Air Force,

too, wanted to do something about a computing problem | getting a time-
a

32Parnas, exhibiting the decent regard for empiricism that is requisite in computer

science, pointed out some of them [Par72, pp. 335{336]. The text of this section points
out others that are speci�cally relevant to present purposes.

35

sharing operating system for use by the Air Force Data Services Center at

the Pentagon that would support secure processing of Secret and Top Secret

information, while serving a user community that included users cleared

only at the Secret level. More generally, the Air Force wanted solutions

to the problems of multilevel security set out in the Ware report or, at

least, a well de�ned research program aimed at producing solutions to those

problems. So the Air Force did what military organizations typically do with

problems of this kind. It ordered an o�cer who seemed to have reasonable

quali�cations in the area to get busy solving them.

Major Roger R. Schell, armed with a brand-new Ph.D. in computer

science from MIT and �ve years' experience with with Air Force computer

systems prior to matriculating at MIT in June 1968 [Scha], got the job,

though he didn't want it and tried to avoid it [Sch93b, A175]: \I was a very

reluctant draftee."

There were good reasons for Schell's reluctance. First, he had considered

computer security as a dissertation topic during his graduate work at MIT

and had been told that the problems involved were unsolvable and that he

would never �nish his degree if he took them on [Sch93b, A136�]. Second,

the assignment took him away from management information systems, the

area he wanted to work in. And, third, research wasn't his area. Schell's

background was in engineering and management, where the point was to get

systems delivered on time and within budget [Sch93b, A110]. He had strong

misgivings about being involved with projects that had a large research

component [Sch93b, A195]: \The R&D people were people you stayed away

from, because if you let them in your project, they would sink you and your

project."

Nevertheless, in August 1971, on assumption of his duties as project

o�cer for computer security within the Directorate of Information Sys-

tems Technology, Electronic Systems Division, Air Force Systems Command

[Scha], Schell found himself running projects of exactly this kind.

Schell had two crucial problems to deal with. To begin with, he had

to de�ne a viable technical approach to the problem of building multilevel

secure time-sharing operating systems. Having done that, an impossible task

according to his erstwhile mentors at MIT, he had to �nd a way to make

the ideas involved in the technical approach practically e�ective by selling

them to people who counted. Schell solved the core technical problem by

creating the idea of what came to be called a security kernel, in Schell's

words a \subset of the hardware and software that was su�cient to provide

security even if the remainder of the system" had been produced \by an

36

adversary."33 The Anderson panel, formed as a result of the work being

done at ESD, provided Schell with a way of solving the remaining problem

of selling the security kernel approach to people who could get things done.

Schell cultivated the Anderson panel assiduously,34 introducing and ex-

plaining his ideas to its members and, in particular, spending hours with

James Anderson, the panel's chair, trying to persuade him to include the

ideas in the panel's report [Sch93b, A214�].

As things turned out, Schell made his sale, insofar as it involved selling

his ideas to the Anderson panel. The panel endorsed Schell's ideas in the

following language [And72, Vol. I, p. 9]:

The basic concept upon which multilevel secure computing

systems can be based is that of controlled sharing. Explicit con-

trol must be established over each user's (program[']s) access

to any system resource which is shared with any other user or

(system) program. Essential to this concept is the requirement

that each subject of the system (viz. system entities such as a

user or a program which can access system resources) and each
a

33 Quotation as given in [Jel85, p. II-73], citing an interview with Schell conducted
October 28, 1982. The passage goes on to describe the origin of the phrase \security

kernel":

In search of a name for this bold new concept, Schell went to Dr. John B.
Goodenough, then an applied mathematician at ESD. By Schell's own ac-

count, he asked Goodenough, \What would you call this?" Goodenough

replied, \Well, that seems to be a lot like the notion of a kernel in math-
ematics and since it relates to security, why don't you call it a security

kernel?" Since neither Schell nor fellow researchers at the MITRE Corpora-

tion had any other ideas and since Schell was due to submit an abstract for
an upcoming conference, he accepted the Goodenough proposal.

The abstract was titled \Abstract of a Virtual Memory Security Kernel" and was sub-

mitted by Schell as a participant's position paper to the chair of the IEEE Workshop
on Privacy and Protection in Operating Systems, June 13{14, 1972 [Sch92]. A sketch of

Schell's ideas was published soon after the workshop [Sch72].
34 Acting on the advice of a colonel he worked for, who had much experience in research

and disagreed with Emerson's supposed dictum \If a man can write a better book, preach

a better sermon, or make a better mousetrap than his neighbor, though he builds his
house in the woods the world will make a beaten path to his door" [Bar80, p. 496, note 1].

Schell, not yet having built a better computer security mousetrap, was preaching, with

the idea of a security kernel as his theme. The colonel opined that (1) in the real world,
you can't give ideas away, but (2) Schell could feed ideas to the panel, and people would

listen to them because they were too busy to think of ideas on their own [Sch93b, A202].

The colonel's advice may strike some as being a bit cynical, but the course of action he
recommended certainly worked for Schell.

37

object (viz. system entities such as data, programs, peripheral

devices, main memory and subjects which can be accessed by

other subjects) must be identi�ed and interrelated according to

their authorized accessibility.

One of the most promising developments of this idea is the

concept of a reference monitor
2 which enforces the authorized ac-

cess relationships between subjects and objects of a system. . . .

An implementation of the reference monitor concept is a refer-

ence validation mechanism
3 that validates each reference to data

or programs by any user (program) against a list of authorized

types of reference for that user.

� � �

a

2[Note in original:] Reference monitor concept | the notion

that all references by any program to any program, data or device

are validated against a list of authorized types of reference based

on user and/or program function.
3[Note in original:] Reference validation mechanism | the

combination of hardware and software which implements the ref-

erence monitor concept.

Although the panel did not use the phrase \security kernel" in the pre-

ceding passage, the phrase was used in a later passage commenting on the

labels of a �gure [And72, Vol. I, Figure 3, p. 15] depicting the advanced

development plan recommended as an approach \for achieving the objective

of a secure, open-use, multilevel resource sharing system" [And72, Vol. I,

p. 14]:

The access control, reference validation mechanism and security

related functions are referred to as the `Security Kernel'.

A footnote appended to the sentence just quoted seemed to de�ne \se-

curity kernel" as referring, in particular, to \the software portion of the

reference monitor and access control mechanisms" [And72, Vol. I, p. 14,

note 5]. If taken seriously as a de�nition of the phrase \security kernel", the

footnote would have given the phrase a more restricted sense than Schell,

who included both hardware and software elements in his original notion

of a security kernel, had intended. On the other hand, taken literally, and

ignoring the note, the sentence to which the note was appended gave \se-

curity kernel" a sense that was a close match for what Schell originally had

38

in mind and, accordingly, made \security kernel" either a near synonym

for the more exalted sounding phrase \reference validation mechanism" or

a more inclusive term, depending on whether \security related functions"

other than those involved in access control and reference validation were

considered to be part of a system's security kernel.

As things turned out, the footnote was ignored. In later discussions of

computer security, the usage of \security kernel" conformed to Schell's orig-

inal intention, including both hardware and software elements of computing

systems in its reference, and \security kernel" served, for the most part, as

a way of expressing what the Anderson panel had included under the phrase

\reference validation mechanism".35

According to the usage established subsequent to the Anderson report's

publication, the following passage [And72, pp. 9{10] can be taken as further

specifying the requirements a security kernel must satisfy:

Accompanying the concept of Reference Monitor are other

essential design requirements. They are:

a. The reference validation mechanism must be tamper proof.

b. The reference validation mechanism must always be invoked.

c. The reference validation mechanism must be small enough to

be subject to analysis and tests, the completeness of which

can be assured.

The ultimate e�ect of Schell's selling his ideas to the Anderson panel was

to sell them to the Department of Defense. The section of the Orange Book

that explains the rationale for the requirements de�ning the various security

classes [NCS85b, pp. 65{69] begins with a passage consisting mainly of an

abridged version of the passages quoted here from the Anderson report's ac-

count of the reference monitor concept and reference validation mechanisms.

The security kernel/reference monitor approach to building multilevel

secure time-sharing operating systems, as described in the Anderson report,
a

35 See, for example, the Orange Book's de�nition of \security kernel" [NCS85b, p. 115].

[Lan83, p. 87], perhaps referring to the portion of the Anderson report's text discussed
in the two paragraphs preceding the one to which this note is appended, observes that \the

term has also been used to denote all security-relevant system software." However, this

usage, which makes \security kernel" a term for the software portion of what [Nib79b] and
the Orange Book [NCS85b, p. 116] call a \trusted computing base", is much less common

than the usage that conforms to Schell's original idea by including hardware elements of a

system in the reference of \security kernel", but limits application of the phrase to system
elements related to access control and reference validation.

39

opened up the prospect of reducing the negative problem of showing that a

potentially unlimited collection of bad things couldn't happen | Who knew

how many di�erent ways of attacking a time-sharing operating system could

be devised? | to the positive problem of building a piece of software that

did a well de�ned job. The appeal of turning a seemingly impossible negative

problem into possibly solvable positive problem was obvious and had, in fact,

been obvious to Schell from the outset. Reducing the multilevel security

problem to making a software component with speci�ed functionality was

what Schell had in mind when he thought up the security kernel/reference

monitor approach | given his orientation, the only way he could think of

to attack the problem \was to go o� and build something that would help"

[Sch93b, A233].

A second attraction of the security kernel/reference monitor approach

was that, at bottom, it relied on the familiar idea that the way to maintain

con�dentiality of information was to control access to containers of informa-

tion. (Think of the clerks down in Registry zealously guarding paper �les

against access by those who, unlike Smiley, are not entitled to it. The clerks

guard the �les containing information, not the information itself.) The as-

sumption that con�dentiality of information should be seen to by controlling

access to containers of information had been made tacitly in the Ware report

| [War70] gave no hint that there might be another way of handling the

con�dentiality problem | and the Anderson report did nothing to change

this. There was comfort in relying on such a familiar idea and, barring some

obvious problem, it was only reasonable for the Ware and Anderson reports

to do so. But working out in detail how to maintain con�dentiality of infor-

mation via access control in the context of a time-sharing operating turned

out not to be simple, and the ideas that came out of the e�ort were a long

way from being as familiar as the ideas that went into it.

9 Modeling Security

The security kernel/reference monitor scheme was predicated on the assump-

tion that controlling access to containers of information was a reasonable

approach to solving the multilevel security problem, but did not, in itself,

answer the question of just which kinds of access were to be permitted and

which were to be forbidden. This gap in the doctrine evolving at ESD was

�lled by producing an abstract mathematical model of access control policy

40

that could be specialized in the case of a particular operating system to �t

the institutional security policy de�ned by the body of laws, regulations,

and administrative and procedural documents applicable to the system in

question.

Subsection 9.2 discusses the the Bell/La Padula model, which came to

be the third person of the security kernel/reference monitor/security model

trinity that inspired projects based on the �nished form of the ESD doctrine.

Subsection 9.3 discusses rivals of Bell/La Padula. Subsection 9.1 prepares

the way for the discussions of subsections 9.2 and 9.3 by providing back-

ground information on classi�cation, security levels, and clearances that is

relied on in subsections 9.2 and 9.3 and the remainder of this document.

Before proceeding with the discussion of subsections 9.1{9.3, it should

be noted that, besides its speci�c role in the ESD security doctrine, Bell/La

Padula served a more general conceptual purpose | it exempli�ed a way

of terminating the potentially vicious piling up of levels of abstract system

description that threatened to make design veri�cation a nullity, as noted

at the end of section 7.

If Bell/La Padula could serve this purpose, so might other security mod-

els, and the purpose wanted serving and still does. As the exposition of the

report proceeds, it will become clear that there was, and is, considerable dis-

agreement as to whether design veri�cation can provide su�cient assurance

of high levels of computer security, but no doubts about its necessity for

this purpose will come to light. Accordingly, neither will doubts about the

necessity of having abstract security models. As far as security models are

concerned, the unchallenged consensus is that the question is not whether

to have one, but which one to have.

9.1 Classi�cation, Security Levels, and Clearances

In the general sense of the term, classi�cation is the authorized assignment

of a security level to information. The more restricted legal usage of the

word refers only to assigning one of the legally de�ned classi�cation levels

Con�dential, Secret, and Top Secret discussed in section 4. Discussions of

computer security use \classi�cation" in its general sense, rather than in the

restricted legal sense explained in the preceding sentence.

[NCS88b, p. 41] de�nes a security level as:

The combination of a hierarchical classi�cation and a set of non-

hierarchical categories that represents the sensitivity of informa-

tion.

41

A category is de�ned as [NCS88b, p. 8]:

A restrictive label that has been applied to classi�ed or unclas-

si�ed data as a means of increasing the protection of the data

and further restricting access to the data.

NOFORN (Not Releasable to Foreign Nationals) and PROPIN (Caution {

Proprietary Information Involved) are examples of categories [CSE85c, p. 9].

The structure of security levels involved in handling sensitive information

(see [CSE85c, Appendix B]) is much more complicated than the hierarchy

of legally de�ned classi�cation levels. The practice of augmenting the le-

gal classi�cation hierarchy by adding the security level Unclassi�ed at the

bottom (so that, from the bottom up, the hierarchy runs Unclassi�ed, Con-

�dential, Secret, Top Secret) is ubiquitous. There does not seem to be a well

established way of referring to the hierarchical component of a security level

when the legal classi�cation hierarchy is augmented by adding Unclassi�ed

and, perhaps, other hierarchical levels. The phrase \sensitivity level", used

for this purpose in [Lan81, p. 248], is a reasonable choice and will be so used

in what follows.

Using this terminology, the de�nition of \security level" quoted above

can be glossed as saying that a security level is the combination of a sensitiv-

ity level and a set of nonhierarchical categories that represents the sensitiv-

ity of information. The terminology and the resulting gloss of the de�nition

drawn from [NCS88b, p. 41] have the advantage of simultaneously �tting

the usage customary in discussions of computer security and cutting down

the confusing overloading of the term \classi�cation".

In addition to a hierarchy of sensitivity levels that augments the legally

de�ned hierarchy of classi�cation levels, real cases almost always involve

categories. Security levels are ordered by saying that level `1 dominates `2

if, and only if, the sensitivity level associated with `1 is at least as far up

the hierarchy of sensitivity levels as the sensitivity level associated with `2

and every category in the set of categories associated with `2 is also in the

set of categories associated with `1.

In the sense of the term applicable to discussions of computer security,

clearance is the authorized assignment of a security level to an individual.

In order for a someone cleared at level `1 to have authorized access to infor-

mation classi�ed at level `2, it is necessary that `1 dominate `2.

The legally and institutionally de�ned sense of the word \clearance" is

related to the usage just de�ned, but somewhat di�erent [CSE85c, pp. 27{

28].

42

9.2 Bell/La Padula

The discussion of this subsection presents neither a detailed analysis of the

Bell/La Padula model's development nor a technical analysis of any partic-

ular version of the model. The aim, instead, is to give a clear enough de-

scription of the Bell/La Padula model's characteristics to enable the reader

to follow the discussion of the following sections of the report, particularly

the subsequent discussion of the Orange Book proof requirements.36

Subsubsection 9.2.1 describes the Bell/La Padula model's basic features,

including particularly the simple security property and the *-property,37

and subsubsection 9.2.2 explains the role of the *-property in combating the

threat of Trojan horses. Subsubsection 9.2.3 explains why the *-property, de-

spite its role in dealing with Trojan horses, cannot be imposed with full gen-

erality, and subsubsection 9.2.4 discusses kinds of computer security threats

that the Bell/La Padula model cannot describe and must, therefore, be dealt

with on some other basis.

9.2.1 Basic Features

The Bell/La Padula model can be decomposed into representational ele-

ments called states, operational elements called rules, and prescriptive ele-

ments called axioms or requirements. In the remainder of this document,

\requirement" is used to refer to model elements of the third kind, except

in cases where the usage of the Orange Book and related documents that

refer to model elements of the third kind as \axioms" is discussed explicitly.

A state represents the entire collection of information present in a com-

puter system at a given stage of computation, and the process of computa-

tion is viewed as a sequence of transitions from one state to another accord-

ing to the model's rules. The requirements de�ne what it is for a state to be

secure. When the Bell/La Padula model is applied to a particular computer

system, the system is regarded secure with respect to the aspects of its be-

havior represented by the instance of the model involved in that application

if, for the states, rules, and requirements of the model instance, every state

in every computation starting with a secure state and proceeding according

to the rules is secure.
a

36The Orange Book criteria for security classes where a formal security policy model is

required do not mandate use of the Bell/La Padula model, but Bell/La Padula and the
methods evolved for using it in system design and construction furnished the paradigm

for what was to be expected of security modeling and design veri�cation.
37*-property" is pronounced the same as \star-property".

43

The Bell/La Padula model's requirements cover two di�erent aspects of

computer security: mandatory security requirements have to do with repre-

senting and enforcing the classi�cation/clearance system, and discretionary

security requirements have to do with the need to know principle.

Mandatory security requirements: The Bell/La Padula model's dis-

tinctive mandatory security requirements are commonly expressed in the

slogan \Read down! Write up!" The slogan is easy to remember, but ev-

ery word in it must be explained, if it is to be understood correctly. The

explanation begins with a more detailed description of what states are like.

Following the lead of the �rst passage from [And72, Vol. I, p. 9] quoted

in section 8, the Bell/La Padula model distinguishes certain components

of states as objects | containers of information | and other components

as subjects, which act on objects and may act on each other. Files (in

the computing sense of the word) and output devices (such as printers and

video displays) are typical examples of objects. Subjects are programs in

execution, consisting of a computational process and the objects it relies on

as it runs (its domain of execution.) Since subjects contain information and

may be acted on by other subjects, subjects also count as objects.

The various di�erent ways subjects can act on objects are called modes

of access. A subject that has read access to an object is able to obtain

information from the object, but having read access does not imply being

able to change or add to the information the object contains. A subject that

has write access to an object is able to change or add to the information the

object contains, but having write access does not imply being able to obtain

information from the object.

Other modes of access can be considered, but understanding what read

access and write access are is enough to allow explanation of half the words

in the \Read down! Write up!" encapsulation of the Bell/La Padula manda-

tory security requirements. It remains to �nd out about \down" and \up".

Besides distinguishing subjects and objects and the modes of access sub-

jects may have to objects, the model also includes an assignment of security

levels to both. Thus, the security level assigned to a subject is analogous

to a clearance and the security level assigned to an object is analogous to

a classi�cation. The \Read down!" requirement, o�cially called the simple

security property, provides that a subject may have read access to an object

only if the security level of the subject dominates the security level of the

object. The \Write up!" requirement, known o�cially as the *-property,

provides that a subject may have write access to an object only if the object's

security level dominates that of the subject.

44

Discretionary security requirements: In the Bell/La Padula model,

each state includes a table representing a record of decisions made on a case

by case basis by users, the system manager, etc. to grant chosen subjects

various kinds of access to selected objects. This table provides the basis

for the model's discretionary security requirements | a subject may have

access to an object in a given mode only if the table records that the subject

is permitted such access to the object.

Secure states: Combining the model's representations of the classi-

�cation/clearance system and the need to know principle, Bell/La Padula

de�nes a secure state as a state that satis�es both the mandatory security

requirements and the discretionary security requirements.

Proofs of design correctness: The Bell/La Padula model provides the

basis for a straightforward method of proving that a system is secure with

respect to aspects of its behavior represented by an instance of the model:

prove that, for the states, rules, and requirements of the model instance,

all initial states are secure and each rule transforms secure states to secure

states.

9.2.2 The *-property and Trojan Horses

Nothing like the *-property is involved in the world of paper �les where all

this began, so why is it in the model?

The answer is that the *-property rules out Trojan horses. In order for a

subject to have read access to an object assigned a given security level, the

level of the subject must dominate the level of the object (\Read down!")

But then, due to the logical properties of the dominance relation and the *-

property, the subject can only have write access to objects that have security

levels that dominate the security level of the object to which the subject has

read access (\Write up!") A subject cannot, therefore, transfer information

from an object to which it has read access to an object with a lower security

level, and, hence, cannot act as a Trojan horse.

9.2.3 Trusted Subjects

While it's a good thing to rule out Trojan horses, it turns out, unfortunately,

that the *-property rules out certain kinds of things that must be done to

get an operating system to work. For example, all users must, as a practical

necessity, be able to send �les to printers, which means that the subject

that controls the initial phase of the printing process | the print spooler |

45

must be able to read information from �les of all security levels and write

it to the queue that controls the order in which things are printed | the

print queue. So far, so good. The simple security property and *-property

will be satis�ed if the print spooler and the print queue are assigned the

highest security level available on the system. But then, unless everything

printed is to be labeled with the highest security level available, the subject

that actually controls the printer or printers | the print driver | must be

permitted to violate the *-property.38

It's good for systems to be secure, but they must work. Consequently,

selected subjects, called trusted subjects, are exempted from the requirement

of satisfying the *-property. This has the e�ect of enlarging the collection of

software that must be subject to stringent assurance requirements beyond

what is involved in a security kernel. The resulting collection of software

and associated harware that must, assuredly, perform correctly if the system

is to be regarded as secure is called the system's trusted computing base.39

In e�ect, allowing a new trusted subject into the trusted computing

base amounts to introducing a potential trap door. It must be shown that

real trap doors are not thereby introduced, and the Bell/La Padula model

provides no systematic guidance about how to demonstrate this.

9.2.4 Covert Channels

There is another problem to be dealt with, besides the need for trusted

subjects. The Bell/La Padula model is based on a scheme for controlling

expected ways of transmitting information in a computer system. [Lam73]

pointed out that there may be unexpected ways of transmitting information

that fall outside the purview of Bell/La Padula. These came to be called

covert channels.

Covert channels come in two varieties. Covert storage channels use sys-

tem storage locations that are not counted as objects in the process of doing

the dirty work (and, for practical reasons, there must be some locations that

are not counted as objects.) Covert timing channels do without storage en-

tirely, allowing the signaling of information from one subject to another by

modulating the rates at which system processes occur.

In order to build a secure system, covert channels must be found and

eliminated, or, if their entire elimination is impractical or impossible, the
a

38See [LHM84] for other examples of subjects that typically must be allowed to violate

the *-property.
39See [Nib79b], [NCS85b, p. 116], and note 35.

46

rate at which information can be transmitted via the covert channels that

remain | their bandwith | must be reduced to an acceptable level. As in

the case of trusted subjects, Bell/La Padula provides no systematic guidance

as to how to do this with assurance.

9.3 Other Security Models

For a survey of other security models put forth prior to 1981, see [Lan81].

Prominent later models include those described in [GM82], [Sut86], and

[McC87, McC88].

47

48

Part III

49

50

10 The DoD Computer Security Initiative

Stephen T. Walker described the DoD Computer Security Initiative's origins

as follows [Wal93a, A032{A053]:

Starting about 1974 I was at DARPA, and I was in charge

of the computer security research activities, among other things,

that were going on at DARPA. And we produced a number of

technology demonstration systems that were pretty good for the

time.40

In 1978 I was invited to come over to the Assistant Secretary

of Defense for C3I's o�ce41 and do something about the political

side of the computer security problem42 | having demonstrated

on the technical side what could be done, how do we get these

ideas into the Department on a broad scale basis? Because very

little had been done to incorporate these ideas into ongoing sys-

tems at that point. So in '78 I moved over.

� � �

. . . And I started what was called the Computer Security

Intiative, which was basically three thrusts: To get the Defense

Department to act together relative to computer security R&D

and usage. To get industry involved in �guring out how to build

some trusted systems, so that we'd have some products to deal

with, basically to get them to build systems that were better than

the then existing commercial practice. And the third piece was to

get there to be in the Defense Department, or in the Government

somewhere, a center of excellence that could evaluate how well

industry had done in producing their products.
a

40Author's note: See [Wal80, pp. 655{657].
41Author's note: \C3I" is short for \Command, Control, Communicationss, and Intel-

ligence".
42Author's note: According to the Orange Book [NCS85b, p. 1], \The DoD Computer

Security Initiative was started in 1977 under the auspices of the Under Secretary of Defense

for Research and Engineering to focus DoD e�orts addressing computer security issues."
Walker was brought to DoD to turn this idea into a program and implement it.

In the research on which this report is based, information was not sought about how

the 1977 decision to launch the DoD Computer Security Initiative was made. This should
be looked into.

51

So we wanted to get the Defense Department organized both

in its R&D and its usage, we wanted to get industry involved, and

we wanted to get a center someplace that could do evaluations.

And the term \evaluation center" became an integral part of

that discussion.

The programWalker had in view was expressed as follows in a paper that

resulted from an NBS invitational workshop held at Miami Beach, November

28{30, 1978 [L+80, p. 8-9]:

The speci�c tasks that we recommend be performed are:

� From available literature and people's experience, prepare

a series of reports that characterize the current state of the

art, including both the state of the technology and the state

of current systems.

� Formulate a detailed security policy, including especially

nomenclature and marking schemes, for any and all sensi-

tive information not covered by the relevant national secu-

rity policies and guidelines.

� Establish a formal security evaluation and accreditation

process, including the publishing of an \approved products

list", to guide speci�cation and procurement of systems in-

tended to handle sensitive information.

Only the third part of this tripartite program was carried out, resulting in

the Center and the Orange Book.

The di�culty of carrying out the program's second part can be appre-

ciated from the discussion of NSDD 145, NTISSP 2, and the Computer

Security Act of 1987 given in subsection 2.2.

The purpose and character of one of the reports called for in the pro-

gram's �rst part was made clear as follows [ibid.]:

To deal with the lack of awareness of the nature of the com-

puter security problem, and its reality . . . we recommend that

the results of all past e�orts to penetrate and repair operating

systems be assimilated into a single report. . . . For this e�ort

to serve its purpose it must . . . employ great candor and iden-

tify speci�c techniques used to break speci�c systems. Without

this, the report will not be su�ciently credible to perform the

necessary consciousness-raising function.

52

The need for a compilation of horrors of this kind is a current issue [Cou91,

pp. 36, 163{164], and its implications outrun consciousness-raising [Pet92].

[LBMC93] appears to be the �rst public DoD document aimed at producing

such a compilation.

11 Locating the Center

How the Center came be located at NSA is Walker's story, and it is best

to let him tell it with minimal authorial intervention [Wal93a, A053{A091,

A297{A354]:

. . . There was a great deal of energy spent trying to �gure out

where [the evaluation center] should be.

Interviewer: . . . when you look at some of the policy objec-

tives that are stated in the back end of the Orange Book and

you say \And they handed the job of trying to see to all of this

to an arm of NSA", that seems quite peculiar.43

Walker: [Wry chuckle.] There were interesting times with

that.

There were no obvious candidates in the Defense Depart-

ment. There was the Defense Communications Agency, which

could have done the job but really didn't have a computer orien-

tation at that point. There was the Defense Intelligence Agency,

which had a very speci�c mission and didn't really have any ex-

tra resources to apply to the problem. There were the services.

The Air Force was leading the technology exploration at that

point.

� � �

Roger Schell had started a lot of the stu� in the Electronic

Systems Division up at Hanscom Field in Massachusetts. From

there, from about the mid 70's, that whole e�ort was falling out
a

43Author's note: At the time the question was asked, handing the job to NSA seemed

peculiar in view of passages like \A major goal of the National Computer Security Center is

to encourage the Computer Industry to develop trusted computer systems and products,
making them widely available in the commercial market place" [NCS85b, p. 58], taken

together with the general account of the Agency's history given in [Bam82]. Subsequent to

the interview, reading the description given in [Jel85, chapter 4] of the kind of procurement
strategy to which NSA was accustomed reinforced the initial impression of peculiarity.

53

of favor within the Air Force. So it would have been hard to put

the center there.

� � �

. . . So we spent a lot of time talking about alternatives. We

talked about a program o�ce at NSA that would involve people

from other agencies coming together. My management at OSD44

didn't want anything as complex as that.

For a while we went o� and explored \This is really a Govern-

ment-wide problem, not just a Defense Department problem,

even though the Defense Department has the biggest initial stake

in it."

So we actually talked to Jim Burrows, who was . . . the head

of the computer science side of NIST, in early 1980 about es-

tablishing a Federal computer security evaluation center which

would be located at NIST, probably funded and sta�ed about

2/3 by Defense Department people, that would be a Govern-

ment-wide thing and would be in an open environment such as

NIST would provide.

And . . . I actually wrote a charter for the Federal computer

security evaluation center,45 and we talked to folks in Congress

about it. And various folks, including the Director of NSA didn't

like that idea, came down pretty hard against it for some histor-

ical reasons and some turf reasons.

� � �

I had been advocating the Federal center. In early '80 my

boss, Gerald Dineen, would go out to NSA, and he'd come back

and say, \Steve, I don't know what's going on, but those guys

really don't like what you're doing."

Interviewer: Do you have a sense for what was going on? I

mean, why were they so adamant?

Walker: They wanted that turf. They didn't want it to be

anywhere else.

� � �

a

44Author's note: O�ce of the Secretary of Defense.
45Author's note: See [Jel85, Appendix A].

54

. . . when I went to see Inman46 in August, in August of '80,

and sat in his o�ce and told him the background of what I was

trying to do, he just sat there. And, �nally, at one point he

rolled up in his chair, he pounded his �st on his desk, and he

said, \I will never let that happen! I will go to the President to

keep that from happening!" . . . these moments remain vivid in

my mind, even yet.

� � �

I was sitting in this room which was about four times bigger

than this room,47 we were at the far end with his desk, and I

was sitting in the chair next to his desk. And I'm sitting there

thinking \How can I get out that door?" [Wry, nervous chuckle.]

And then he turned after he said that, and said, \I under-

stand what you're saying and I agree with you and I want to do

that at NSA." The problem was they didn't want NBS or any-

body else involved. They wanted to own this technology. And

what I had been doing up to that point was advocating that

somebody else be involved.

Well, my �rst reaction was \I've been snookered, because this

guy now wants to grab this thing." So that's when I made the

argument \You've got to do it separate from the way COMSEC

is done."

And Inman believed me, and this was in August. He said,

\If you will write a letter to me", you, Gerry Dineen, \I will get

back to you about how we will do this, and we will do it separate

from the COMSEC organization."

So I went back to the Pentagon the next day, and I wrote a

three liner from Dineen to Inman: \Tell me how you would do

this." And in September came back a classi�ed document that

said \This is how we would do it."

Then began all kinds of discussion between me and other

folks at NSA. Inman was sticking by his word. This was going

to be a di�erent organization.

� � �

a

46Author's note: For information on Inman, see The New York Times, December 17,
1993, pp. A1, B12, and B13, [NSA77], [Ben77], [Bam82, pp. 80{85, 113{114, 306, and

353{363], and [Jel85, pp. II-53, II-62{II-65, and II-80{II-87]. See also [Inm80].
47Author's note: Walker's o�ce at Trusted Information Systems, where the interview

took place, is approximately 15' � 20'.

55

. . . See what happened was: before it was NSA trying to grab

this. Now it became: within NSA the guys who wanted to grab

it were being excluded from it.

� � �

And so I actually succeeded to a very large extent, because I

got a completely independent organization with its own budget.

NSA had, at that point I think NSA had only three funding el-

ements. A funding element is a recognizable place that you can

get money from, and, because of the nature of their business,

there were only three in the entire Agency. Whereas a compa-

rable agency would have hundreds or thousands. And what this

did was create a fourth one that was separate. Now it wasn't a

huge budget, but it was [a separate thing].

� � �

And that was a very signi�cant point. I viewed that, you

know, as a major victory in this whole exercise.

12 Establishing the Center

As the Center's �rst Deputy Director, Roger Schell again had a job he didn't

want [Sch93b, A603{A628]: \I was again an unwilling volunteer." Schell's

appointment came about as a result of a personal note from Admiral Inman

to General Jones, Air Force Chief of Sta�, who, in turn, wrote a note to

the appropriate Air Force personnel people saying: \This Air Force colonel

will be assigned to Ft. Meade." And that was that. \I'd been asked several

times by Steve [Walker] and others if I wanted to volunteer, but I said `No'.

So I was drafted."

There was a lot of doubt in the Air Force about whether formation of

the Center was the best thing for the interests of the individual services,

and Schell had been strongly of this opinion. \So I ended up implementing

and having to make successful what I had advocated should not be done."48

a

48[Bam82, p. 86] describes the roles of Director and Deputy Director, NSA, as follows:

DIRNSAs . . . are . . . selected . . . to be senior bureaucratic managers who

are supposed to balance budgets, settle squabbles, crack whips, pat backs,
extinguish �res . . . The day-to-day running of the Puzzle Palace is left to

the deputy director . . .

This pattern is replicated in the Agency's suborganizations. Consequently, as Deputy

56

There were two basic parts to the job: to provide a technically sound

point of view and to build a sound administrative structure. When Schell

was assigned to the Center (1981) \there were thirty�ve disjoint people, who

didn't even know who each other were, that were assigned as the Center"

[Sch93b, A629]. When Schell left (1984) there were about two hundred

people and a good organization.

13 Writing the Orange Book

13.1 Lineage

The direct line of documents leading to the Orange Book is as Follows:

[L+80], [Nib79a], [CSE82], [CSE83b], [CSE83c], [NCS85b].

13.2 Proof Requirements

The Orange Book proof requirements build up as follows. The B2 criteria

require a formal security policy model and a detailed top level speci�cation

(DTLS) of the trusted computing base (TCB) [NCS85b, pp. 31 and 32].

The B3 criteria require, in addition, a convincing argument, but not a proof,

that the detailed top level speci�cation is consistent with the formal security

policy model [NCS85b, p. 40]. The A1 criteria go beyond this by requiring a

formal top level speci�cation (FTLS) of the trusted computing base, together

with an argument combining formal and informal techniques to show that

the formal top level speci�cation is consistent with the formal security policy

model [NCS85b, p. 50]. Furthermore, it is required that formal methods be

used in the mandatory covert channel analysis [NCS85b, p. 49].

a

Director, DoD Computer Security Evaluation Center, Schell was responsible for making
things work.

57

58

Part IV

59

60

14 A Guide to Sections 15 through 18

Sections 15{18 discuss four aspects of processes and products associated

with the creation of the Orange Book and the activities of the Center that

have been chosen for analysis. This section provides a brief introduction to

each of these sections.

Information and Expertise: Section 15

The Center's product evaluations and associated activities have led to pub-

lication of an impressive and useful collection of documents. Also, taken

together, the Center's operations and the processes involved in creating the

Center and the Orange Book have produced a valuable pool of computer

security expertise that has spread through a substantial part of the com-

puting industry. Section 15, referring to appendix B for an analysis of the

Center's publications, concentrates on discussing this industrial di�usion of

computer security expertise.

Availability of Products: Section 16

According to the Orange Book, \A major goal of the National Computer

Security Center is to encourage the Computer Industry to develop trusted

computer systems and products" [NCS85b, p. 58]. Relying on appendix C

for an aggregate analysis of data on systems evaluated by the Center, sec-

tion 16 discusses the extent to which this goal has been met.

Design Veri�cation: Section 17

The Orange Book depends, in large part, on design veri�cation to furnish

the assurance required for multilevel secure systems. Section 17 examines

the question \To what extent is this reliance justi�ed?" in the light of

experience with development e�orts aimed at producing systems satisfying

the A1 evaluation class criteria.

Proof Requirements and Endorsed Tools: Section 18

Section 18 discusses the quality of the endorsed tools available to vendors

and its e�ect on projects aimed at producing highly secure systems.

61

15 Information and Expertise

The Orange Book e�ort has produced a substantial body of published com-

puter security information and a valuable pool of computer security exper-

tise. Both the publications and the expertise have been important resources

in developing the draft Federal Criteria for Information Technology Security

[NIS92a, NIS92b]. Appendix B discusses the National Computer Security

Center's publications. This section discusses the pool of expertise resulting

from the Orange Book e�ort.

The pool of expertise resulting from the Orange Book e�ort has spread

through a substantial part of the computer industry, as those involved in

developing the Orange Book and former members of the Center's sta� have

taken positions in the private sector and development of systems designed

to meet the Orange Book requirements has led to the growth of indigenous

knowledge about techniques for building secure systems within the technical

sta�s of manufacturers involved in such e�orts.

That the di�usion and development of expertise attributed to the Orange

Book e�ort in the preceding paragraph have occurred seems clear,49 but

the body of evidence gathered in preparing this report provides no way of

accurately estimating their magnitude.50 Progress could be made toward

providing such estimates through detailed examination of the participant

lists of the Proceedings of the National Computer Security Conference and

Proceedings of the IEEE Conference on Security and Privacy, and other

methods of estimation could be devised. But these are jobs for another

time.

a

49See, example, the following parts of [Rep90]: (1) Stephen Lipner's letter and the
statement by DEC, pp. 3{10, (2) Stephen Walker's oral and written testimony, pp 85{

102, and William R. Whitehearst's letter and accompanying attachment, pp. 169{176.

50Culling my .mailrc �le (the Unix �le that controls the behavior of the mail program

and allows users to de�nes aliases for electronic mail addresses) and sending an electronic

mail query to ten people about former Center sta� now working in industry produced
a list of twentynine names relevant to the di�usion of expertise, but the actual di�usion

�gure must be several times this. (Only two recipients responded to the query, and force

of circumstance prevented their spending much e�ort on answering it.)
The Agency was queried about the number of former Center sta� now working in

industry [Pot93d], [Pot93c], but this information is not tracked [Ano93b].

62

16 Availability of Products

In full, the goal referred to in section 14 is for trusted computer systems

and products to be made \widely available in the commercial market place"

[NCS85b, p. 58]. This section discusses the extent to which this goal has

been met.

Appendix C analyzes aggregate data on products evaluated, relying pri-

marily on data drawn from the Evaluated Products List (EPL). The analysis

reveals that considerable progress toward realizing the goal of widespread

commercial availability of trusted computer systems and products has been

made at the C2, B1, and B2 levels, but there is a very sharp break at the

B3 level. As far as operating systems, the initial focus of the Orange Book

e�ort, are concerned, each of the B3 and A1 levels is limited to a single

product.

Comparing the analysis of EPL given in appendix C with [CSE85c, tables

5 and 7] strongly indicates that, so far, the Orange Book e�ort has not

led to commercially based satisfaction of the Department of Defense's need

for multilevel secure systems. Consequently, the problem that drove the

whole e�ort | running from the Ware and Anderson reports, through the

fundamental work done by ESD, via the DoD Computer Security Initiative

and the system building e�orts reported in [Wal80] and [Lan83], to the

creation of the Center and Orange Book, and beyond | has not been solved

by the means chosen for its solution.

The following possible reasons for failure to solve the multilevel security

problem on a commercial basis have come to light in the course of the

research on which this report is based.

First, building a B3 system requires starting from scratch | you can't

build one by modifying a B2 system [Sch93b].

Second, a number of economic factors have tended to work against pro-

duction of B3 systems. (1) DoD has a weak record in maintaining pro-

curement requirements specifying highly secure systems [Sch93b], [Bon93b].

This tends to destroy the competitive advantage builders of such systems

were supposed to derive from the evaluation process. (2) Export controls,

which come into play at the B3 level, discourage vendors from o�ering high

end secure systems as part of their reguar product line [Rep90], [Sch93b],

[Lip93]. (3) Shifts in the market for operating systems have tended to make

the existing scheme for evaluating systems less relevant to actual demand

than it once was [Lip93], [Bon93b]. (4) Government behavior has often

been at odds with the stated policy for procuring secure systems, preferring

63

what are, in e�ect, bespoke systems built at the Government's expense to

commercially developed systems [Sch93b], [Bon93b].

Clearly, building a B3 or A1 system is a di�cult and costly task, and the

combination of economic factors (1){(4) is not likely to encourage manufac-

turers to take on the job. This is a plausible explanation for the B3 break,

and there the matter must rest, as far as this report is concerned.

17 Design Veri�cation

Both documentary evidence [Sch89, passim.] and interview evidence indicate

that the design veri�cation activities required at the A1 level tend to be-

come dissociated from system construction. This tendency manifests itself

in varying degrees, from an extreme where design veri�cation is essentially

epiphenomenal (the veri�cation activity proceeds and so does system con-

struction, but the former has little or no in
uence on the latter), through

intermediate cases where the design and veri�cation group and the system

construction group drift apart, despite strong e�orts to integrate their ac-

tivities, to cases where the tendency, though present, seems to have been

overcome.

Assessing the Evidence

Eight development e�orts have aimed at producing A1 systems or DoD

systems intended to meet the A1 requirements. The information about

these development e�orts that formed the base of evidence suggesting and

supporting the thesis stated above can be outlined as follows:

1. Blacker

(a) General references: [Wei92].

(b) References bearing on dissociation tendency: [Wei93] (see ap-

pendix D), [FH93].

(c) Remark: [Wei93] has a strong general bearing on the concerns of

this section.

2. Boeing secure LAN

(a) General references: [NSA93a, pp. 4-162{4-163], [Sch85], [NCS91a].

64

(b) References bearing on dissociation tendency: None.

3. DEC A1 prototype

(a) General references: [KZB+90].

(b) References bearing on dissociation tendency: [Lip93].

4. GEMSOS

(a) General references: [NSA93a, pp. 4-42{4-43], [LPS89], [LTP90],

[STH85].

(b) References bearing on dissociation tendency: [LPS89], [LTP90],

[STH85], [Sch93b].

5. LOCK

(a) General references: [Boe88], [Cou91, pp. 251{252], [HKMY86],

[HY86].

(b) References bearing on dissociation tendency: [Hai93].

6. Multinet Gateway

(a) General references: [BDF+86], [CGR93a, CGR93b].

(b) References bearing on dissociation tendency: [CGR93a, CGR93b].

7. SACDIN

(a) General references: [ITT78].

(b) References bearing on dissociation tendency: None.

8. SCOMP

(a) General references: [CSE83a], [NSA93a, pp. 4-53{4-54], [Fra83],

[NCS85a].

(b) References bearing on dissociation tendency: [Bon93b], [Har93c],

[Har93b], [Sch89], [Sch93a], [Sch93b].

(c) Remarks:

i. [Sch93b] gives SCOMP as an example of a case where design

veri�cation worked well, but the other references cited under

(b) tend to show that a very high degree of dissociation was

present in the SCOMP development.

65

ii. [Bon93b] suggests a way of resolving the evidentiary con-

ict noted in (2): Roger Schell's direct experience with the

project stemmed primarily from the KSOS 6 phase of the

development, not the later construction of a general purpose

operating system.

Evidence was too slight to support a well grounded judgment relevant to

the thesis stated at the beginning of this section in the case of the following

development e�orts: Boeing secure LAN, Multinet Gateway, and SACDIN.

The SCOMP development was judged to have involved a high degree

of dissociation. Although less information about the DEC A1 prototype

is available than in the case of SCOMP, the degree of dissociation present

seemed to fall somewhere between the middle and high end of the range.

A noticeable tendency toward dissociation was found in the LOCK e�ort,

but this was recognized by the developers and considerable e�ort was put

into overcoming it. In the case of Blacker, the developers were strongly

aware of the possibility of dissociation, took steps to forestall and combat

it, and seem largely to have succeeded. A similar judgment appears fair in

the case of GEMSOS.

In summary, the evidence in hand is su�cient to conclude tentatively

that the thesis of this section is correct. The remainder of the section

attempts to explain why the tendency for design veri�cation activities to

become dissociated from system construction exists.

Explaining the phenomenon

The dissociation tendency seems arise partly due to a kind of cultural clash

between those primarily concerned with design veri�cation and those pri-

marily engaged in actual system construction. A second contributing factor

is the existing structure of managerial values, procedures, and institutional

structures into which design veri�cation is injected in attempts to meet the

A1 requirements.

The general idea behind design veri�cation is that getting very clear

about what needs doing will be helpful in getting it done correctly. This is

very plausible considered relative to a single individual and fairly plausible in

the case of an organization where people in the organization share a common

body of concepts and goals and communicate in a common language. Even

in the latter case, however, an organization| e.g., a military organization|

may have to put sustained e�ort into fostering communication between those

66

involved in planning and those at the sharp end, if the potential bene�ts of

clear planning are to be realized.

These factors are often lacking in the case of design veri�cation. Due to

their di�ering backgrounds, project members working with formal methods

as part of the design veri�cation process and project members engaged in

writing code are likely to lack a common body of concepts, have di�ering

goals, and not share a language adequate to express what they need to say

to each other, if they are to cooperate e�ectively. Beyond this, as [Tie92,

p. 259] observes, referring to [Qui91]:

A development process centered on formal methods pushes its

costs upstream: the speci�cation and design stages cost more,

while maintenance costs are presumably reduced. Indeed, this

very change of emphasis from downstream to upstream is one

of the major promised bene�ts of formal methods, for they are

better able to catch those ambiguities of speci�cation which be-

come increasingly costly to correct the further down the lifecycle

the software goes. However, there is a snag. For this bene�t to

be felt, client organizations must change the way projects are

budgeted for. As Quintas has pointed out, budgeting for for-

mal methods runs against normal practice. The Project Man-

agers responsible for commissioning or building software are not

normally the same people | and sometimes not even the same

departments | responsible for maintaining the software later.

On this account, Project Managers in client organizations have

a problem justifying the higher initial costs of formal methods

developments, when the bene�ts are are di�cult to assess in

advance, and anyway, they probably fall into somebody else's

patch.

This does not bode well for the chances of putting in the time and e�ort

necessary to foster communication between project members working on

design veri�cation and those engaged writing code.51

a

51 It is worth pointing out that Roger Schell expressed very strong agreement with the

ideas of the passage just quoted [Sch93b]. [CGR93a, CGR93b] contains information on the

Multinet Gateway that may be relevant to these ideas, but, although the survey reported
asked about the cost of formal methods use to the project, it did not ask speci�cally about

their e�ect on the longitudinal pro�le of system cost.

67

18 Proof Requirements and Endorsed Tools

According to the A1 proof requirements, veri�cation evidence showing that

the formal top level speci�cation is consistent with the formal security policy

model must be \consistent with that provided within the state-of-the-art of

the particular National Computer Security Center-endorsed formal speci�-

cation and veri�cation system used" [NCS85b, pp. 50{51]. The e�ect of

this is to make the Endorsed Tools List [NSA93a, pp. 4-191{4-197] part of

the A1 proof requirements' de�nition.

One would expect from this that populating the Endorsed Tools List

(ETL) must have been one of the Center's initial concerns, and interview

evidence bears this out. But there is strong evidence that really satisfactory

tools were never produced [Goo93], [Har93c], [Sch93a], [Sch93b], [LTP90].

The de�ciencies of the tools that were built and placed on the ETL have

two aspects: (1) the tools available simply are not up to production quality

standards, and (2) little seems to have been done to enhance tools in ways

required in order to deal with the assurance requirements of levels beyond

A1. It is clear that aspect (1) has had a negative impact on past and current

projects aimed at building A1 systems. Aspect (2) is noteworthy for two

additional reasons. First, according to [CSE85c, tables 5 and 7], systems sat-

isfying requirements more stringent than those of the A1 level are necessary

for a full solution of the multilevel security problem. Second, the discussion

of section 17 tends toward the conclusion that, in general, the degree of

assurance provided by design veri�cation may have been overestimated.

68

Part V

69

70

19 Historiographic Questions

Clio, muse of history, fascinates and frustrates. Appropriately, so does the

attempt to apply existing analytical historical models to the subject matter

of this report.

Using the term \anomaly" in the general sense derived from the usage of

[Kuh62] by [Con80b, chapter 1], it is fair to say that the work on computer

security ultimately resulting in the creation of the Center and the Orange

Book was driven by recognition of an anomaly. But recognition of this

anomaly involved realizing that time-sharing systems, as they had evolved

by 1967 and seemed likely to evolve in the absence of intervention by the

defense community, would fail in the context of the existing institutional

practices for handling sensitive information. Consequently, the anomaly in

question was not a presumptive anomaly in the sense de�ned in [Con80b,

chapter 1], because recognition of a presumptive anomaly must be due to sci-

enti�cally based realization that an existing technology will fail, or perform

unacceptably, in unrealized, but speci�able and possible, circumstances. Nor

was the anomaly a case of functional failure or technological co-evolution,

in the sense of these terms intended in [Con80b]. Furthermore, in a fairly

straightforward sense, the techniques devised with the aim of producing a

technology that would resolve the computer security anomaly were aimed at

building into the relevant artifacts | operating systems | the institutional

practices that were the basis for recognizing the anomaly in the �rst place.

There does not seem to be an analytical historical model that covers the

situation described in the preceding paragraph.

Also, [Con80b, p. 275, note 33] begins by stating roundly:

The individual does not design a new \tradition" [of techno-

logical practice]; he designs a new device. He may be fully aware

that his device is di�erent from the conventional system, but his

goal is a thing, not a tradition of practice.

But what went on in the case of computer security looks very much like an

e�ort to design a new tradition of practice and, certainly, became such an

e�ort by the time Walker got the DoD Computer Security Initiative up and

going.

Colleagues have suggested that the approach to studying technology

found in [BHP87], particularly in the papers [Hug87], [Law87], and the ideas

71

of [Hug83] may be appropriate for analyzing the history the DoD Computer

Security Initiative and Walker's role in it. Certainly, Charles Stark Draper,

chief progatonist of [Mac90] | which developed from [Mac87], one of the

contributions to [BHP87] | is a better analog of Stephen T. Walker than

is, say, Frank Whittle, \the" inventor of the turbojet engine and a central

�gure in [Con80b].

Walter Vincenti's account of engineering espitemology, given in [Vin90,

chapters 7 and 8], applies tolerably well to the case of trusted computer

systems, as far as design of particular systems is concerned, but there is a

glaring exception | numerical methods do not, and, probably cannot, play

the kind of role in software engineering that Vincenti documents in the case

of aeronautical engineering and, no doubt, can be documented for other

areas of engineering not aimed at producing computer systems. The reason

for the \cannot" is essentially the one Dijkstra [Dij82, passim] and Parnas

[Par85] have emphasized: software is discrete. So, for example, talk about a

model of software behavior's being \correct as a �rst order approximation"

is, at best, metaphorical, and, further, the method of paramater variation,

prominently discussed by Vincenti [Vin90, chapter 5], is inapplicable.

These features both account for the yen for proofs that seems to be char-

acteristic of software engineering, as opposed to other kinds of engineering,

and, also, show why the software veri�cation enterprise is inherently prob-

lematic. Testing can't provide the same kind of assurance it furnishes in

other branches of engineering, so proofs are very desirable. But proofs re-

quire idealized models, and we have no satisfactory way of expressing the

inevitable question of how well the models describe what is actually being

built, let alone having satisfactory ways of answering it.

72

Part VI

73

74

A Summary of Evaluation Criteria Classes, from

the Orange Book, pp. 93{94

The classes of systems recognized under the trusted computer system eval-

uation criteria are as follows. They are presented in the order of increasing

desirability from a computer security point of view.

Class (D): Minimal Protection

This class is reserved for those systems that have been evaluated but

that fail to meet the requirements for a higher evaluation class.

Clas (C1): Discretionary Security Protection

The Trusted Computing Base (TCB) of a class (C1) system nominally

satis�es the discretionary security requirements by providing separation of

users and data. It incorporates some form of credible controls capable of

enforcing access limitations on an individual basis, i.e., ostensibly suitable

for allowing users to be able to protect project or private information and

to keep other users from accidentally reading or destroying their data. The

class (C1) environment is expected to be one of cooperating users processing

data at the same level(s) of sensitivity.

Class (C2): Controlled Access Protection

Systems in this class enforce a more �nely grained discretionary access

control than (C1) systems, making users individually accountable for their

actions through login procedures, auditing of security-relevant events, and

resource isolation.

Class (B1): Labeled Security Protection

Class (B1) systems require all the features required for class (C2). In ad-

dition, an informal statement of the security policy model, data labeling, and

mandatory access control over named subjects and objects must be present.

The capability must exist for accurately labeling exported information. Any

aws identi�ed by testing must be removed.

75

Class (B2): Structured Protection

In class (B2) systems, the TCB is based on a clearly de�ned and doc-

umented formal security policy model that requires the discretionary and

mandatory access control enforcement found in class (B1) systems to be ex-

tended to all subjects and objects in the ADP system. In addition, covert

channels are addressed. The TCB must must be carefully structured into

protection-critical and non-protection-critical elements. The TCB interface

is well-de�ned and the TCB design and implementation enable it to be sub-

jected to more thorough testing and more complete review. Authentication

mechanisms are strengthened, trusted facility management is provided in

the form of support for system administrator and operator functions, and

stringent con�guration management controls are imposed. The system is

relatively resistant to penetration.

Class (B3): Security Domains

The class (B3) TCB must satisfy the reference monitor requirements

that it mediate all accesses of subjects to objects, be tamperproof, and be

small enough to be subjected to analysis and tests. To this end, the TCB

is structured to exclude code not essential to security policy enforcement,

with signi�cant system engineering during TCB design and implementation

directed toward minimizing its complexity. A security administrator is sup-

ported, audit mechanisms are expanded to signal security-relevant events,

and system recovery procedures are required. The system is highy resistant

to penetration.

Class (A1): Veri�ed Design

Systems in class (A1) are functionally equivalent to those in class (B3) in

that no additional architectural features or policy requirements are added.

The distinguishing feature of systems in this class is the analysis derived

from formal design speci�cation and veri�cation techniques and the result-

ing high degree of assurance that the TCB is correctly implemented. This

assurance is development in nature, starting with a formal model of the se-

curity policy and a formal top-level speci�cation (FTLS) of the design. In

keeping with the extensive design and development analysis of the TCB re-

quired of systems in class (A1), more stringent con�guration management is

required and procedures are established for securely distributing the system

to sites. A system security administrator is supported.

76

B The Center's Publications

This appendix breaks the Center's publications down into three main cat-

egories. Subsection B.1 deals with �nal evaluation reports, subsection B.2

covers the Rainbow Series, and subsection B.3 lists kinds of publications

not incuded under the other two heads. The discussion is based mainly on

[NSA93b] and [NSA93a].

B.1 Final Evaluation Reports

Table 1 shows the number of �nal evaluation reports published by the Center

for the years 1985{1992. The data aggregated in the table are drawn from

[NSA93b, pp. 10{13] and [NSA93a, pp. 4-1{4-199].52

1984 1985 1986 1987 1988 1989 1990 1991 1992 Total

2 3 7 8 10 10 8 8 7 63

Table 1: Final evaluation reports published by year. Mean = 7 reports/year,

median = 8 reports/year, mode = 8 reports/year.

B.2 The Rainbow Series

The members of the Rainbow Series are especially prominent among the

Center's publications. Listed in order of publication, they are [NSA93b,

pp. 1{4]:53

(1) Password Management Guidelines [CSE85b],

(2) Guidance for Applying the DoD Trusted Computer System Evaluation

Criteria in Speci�c Environments [CSE85a],
a

52Dates of reports listed in [NSA93b, pp. 10{13] were inferred from document numbers

| e.g., CSC-EPL-92/002, DEMAX Software Incorporated SECUREPAK 3.2, p. 13, was

assigned 1992 as its date, in accordance with [Ano93a].
53The following rules were used in dating the members of the Rainbow Series and

constructing the list. In cases where there was a con
ict between the cover date and the

internal date, the internal date was assigned to the document. If there was no such con
ict

but one date was more speci�c than the other, the more speci�c date was assigned. If the

internal and external dates were the same, documents were ordered according to document

number.

77

(3) Technical Rationale Behind CSC-STD-003-85: Computer Security

Requirements [CSE85c],

(4) Trusted Computer System Evaluation Criteria [NCS85b],

(5) Advisory Memorandum on O�ce Automation Security Guideline

[NMT87],

(6) A Guide to Understanding Audit in Trusted Systems [NCS87a],

(7) Trusted Network Interpretation [NCS87c],

(8) A Guide to Understanding Discretionary Access Control in Trusted

Systems [NCS87b],

(9) A Guide to Understanding Con�guration Management in Trusted

Systems [NCS88c],

(10) Computer Security Subsystem Interpretation of the Trusted Computer

System Evaluation Criteria [NCS88a],

(11) A Guide to Understanding Design Documentation in Trusted Systems

[NCS88d],

(12) Glossary of Computer Security Terms [NCS88b],

(13) A Guide to Understanding Trusted Distribution in Trusted Systems

[NCS88e],

(14) Guidelines for Formal Veri�cation Systems [NCS89b],

(15) Rating Maintenance Phase Program Document [NCS89c],

(16) Trusted UNIX Working Group (TRUSIX) Rationale for Selecting

Access Control List Features for the UNIX� System [NCS89d],

(17) A Guide to Understanding Trusted Facility Management [NCS89a],

(18) Trusted Product Evaluations | Guide for Vendors [NCS90b],

(19) Trusted Network Interpretation Environments Guideline [NCS90a],

(20) Trusted Database Management System Interpretation [NCS91f],

(21) A Guide to Understanding Identi�cation and Authentication in

Trusted Systems [NCS91c],

(22) A Guide to Understanding Data Remanence in Automated

Information Systems [NCS91b],

(23) A Guide to Writing the Security Features User's Guide for Trusted

Systems [NCS91e],

(24) A Guide to Understanding Trusted Recovery in Trusted Systems

[NCS91d],

(25) Trusted Product Evaluation Questionnaire [NCS92g],

(26) A Guide to Understanding Information System Security O�cer

Responsibilities for Automated Information Systems [NCS92c],

(27) Assessing Controlled Access Protection [NCS92a],

(28) A Guide to Understanding Object Reuse in Trusted Systems

78

[NCS92d],

(29) A Guide to Understanding Security Modeling in Trusted Systems

[NCS92e],

(30) Guidelines for Writing Trusted Facility Manuals [NCS92f], and

(31) A Guide to Procurement of Trusted Systems: An Introduction to

Procurement Initiators on Computer Security Requirements

[NCS92b].

Inspection of the preceding list shows that the Center published an average

of about four members of the Rainbow Series per year from 1985 through

1993,54 with a maximum production of seven members in 1992.

The cover colors of the documents in the Rainbow Series mean nothing

[Ano93c], but the document numbers give a rough indication of the order

in which the writing projects that produced the documents were begun

[Ano93a]. The process was like getting the schedules needed in \doing your

income tax" [Ano93a] | when the need for a document was felt, a number

was assigned and the writing task was initiated. For these reasons, it is

worth listing the members of the Series document number order:55

(1) Trusted Computer System Evaluation Criteria [NCS85b],

(2) Password Management Guidelines [CSE85b],

(3) Guidance for Applying the DoD Trusted Computer System Evaluation

Criteria in Speci�c Environments [CSE85a],

(4) Technical Rationale Behind CSC-STD-003-85: Computer Security

Requirements [CSE85c],

(5) Advisory Memorandum on O�ce Automation Security Guideline,

[NMT87],

(6) A Guide to Understanding Audit in Trusted Systems [NCS87a],

(7) Trusted Product Evaluations | Guide for Vendors [NCS90b],

(8) A Guide to Understanding Discretionary Access Control in Trusted

Systems [NCS87b],

(9) Glossary of Computer Security Terms [NCS88b],

(10) Trusted Network Interpretation [NCS87c],

(11) A Guide to Understanding Con�guration Management in Trusted

Systems [NCS88c],
a

54The mean is 3.875 documents/year, and the median and mode are both 4 docu-

ments/year, with modal production occurring in 1985, 1987, and 1989.
55The document numbers are given in the report's reference list. There are gaps in

the numbering, because, for various reasons, some of the writing e�orts were abandoned

[Ano93a]. The Orange Book is, of course, listed �rst, document numbers nonwithstanding.

79

(12) A Guide to Understanding Design Documentation in Trusted Systems

[NCS88d],

(13) A Guide to Understanding Trusted Distribution in Trusted Systems

[NCS88e],

(14) Computer Security Subsystem Interpretation of the Trusted Computer

System Evaluation Criteria [NCS88a],

(15) A Guide to Understanding Security Modeling in Trusted Systems

[NCS92e],

(16) Trusted Network Interpretation Environments Guideline [NCS90a],

(17) Rating Maintenance Phase Program Document [NCS89c],

(18) Guidelines for Formal Veri�cation Systems [NCS89b],

(19) A Guide to Understanding Trusted Facility Management [NCS89a],

(20) Guidelines for Writing Trusted Facility Manuals [NCS92f],

(21) A Guide to Understanding Identi�cation and Authentication in

Trusted Systems [NCS91c],

(22) A Guide to Understanding Object Reuse in Trusted Systems

[NCS92d],

(23) Trusted Product Evaluation Questionnaire [NCS92g],

(24) Trusted UNIX Working Group (TRUSIX) Rationale for Selecting

Access Control List Features for the UNIX� System [NCS89d],

(25) Trusted Database Management System Interpretation [NCS91f],

(26) A Guide to Understanding Trusted Recovery in Trusted Systems

[NCS91d],

(27) A Guide to Procurement of Trusted Systems: An Introduction to

Procurement Initiators on Computer Security Requirements

[NCS92b],

(28) A Guide to Understanding Data Remanence in Automated

Information Systems [NCS91b],

(29) A Guide to Writing the Security Features User's Guide for Trusted

Systems [NCS91e],

(30) A Guide to Understanding Information System Security O�cer

Responsibilities for Automated Information Systems [NCS92c], and

(31) Assessing Controlled Access Protection [NCS92a].

The members of the Rainbow Series can be grouped into three func-

tional categories | criterial documents, advisory documents, and explana-

tory documents.56

a

56Construction of this scheme was informed by [Ano93a], but I devised and named

the categories and parceled out the documents among them. So this way of classifying

80

Criterial documents include the Orange Book and interpretations that

adapt the Orange Book criteria to products other than operating systems,

together with [NCS89c]:

(1) Trusted Computer System Evaluation Criteria [NCS85b],

(2) Trusted Network Interpretation [NCS87c],

(3) Computer Security Subsystem Interpretation of the Trusted Computer

System Evaluation Criteria [NCS88a],

(4) Rating Maintenance Phase Program Document [NCS89c], and

(5) Trusted Database Management System Interpretation [NCS91f].

Advisory documents contain advice on how to do various things:

(1) Password Management Guidelines [CSE85b],

(2) Guidance for Applying the DoD Trusted Computer System Evaluation

Criteria in Speci�c Environments [CSE85a],

(3) Technical Rationale Behind CSC-STD-003-85: Computer Security

Requirements [CSE85c],

(4) Advisory Memorandum on O�ce Automation Security Guideline

[NMT87],

(5) Guidelines for Formal Veri�cation Systems [NCS89b],

(6) Trusted UNIX Working Group (TRUSIX) Rationale for Selecting

Access Control List Features for the UNIX� System [NCS89d],

(7) Trusted Product Evaluations | Guide for Vendors [NCS90b],

(8) Trusted Network Interpretation Environments Guideline [NCS90a],

(9) A Guide to Writing the Security Features User's Guide for Trusted

Systems [NCS91e],

(10) Trusted Product Evaluation Questionnaire [NCS92g],

(11) Guidelines for Writing Trusted Facility Manuals [NCS92f], and

(12) A Guide to Procurement of Trusted Systems: An Introduction to

Procurement Initiators on Computer Security Requirements

[NCS92b].

Explanatory documents provide expository treatments of technical

matters:

(1) A Guide to Understanding Audit in Trusted Systems [NCS87a],

(2) A Guide to Understanding Discretionary Access Control in Trusted

Systems [NCS87b],

(3) A Guide to Understanding Con�guration Management in Trusted

Systems [NCS88c],
a

members of the Rainbow series has no o�cial standing.

81

(4) A Guide to Understanding Design Documentation in Trusted Systems

[NCS88d],

(5) Glossary of Computer Security Terms [NCS88b],

(6) A Guide to Understanding Trusted Distribution in Trusted Systems

[NCS88e],

(7) A Guide to Understanding Trusted Facility Management [NCS89a],

(8) A Guide to Understanding Identi�cation and Authentication in

Trusted Systems [NCS91c],

(9) A Guide to Understanding Data Remanence in Automated Information

Systems [NCS91b],

(10) A Guide to Understanding Trusted Recovery in Trusted Systems

[NCS91d],

(11) A Guide to Understanding Information System Security O�cer

Responsibilities for Automated Information Systems [NCS92c],

(12) Assessing Controlled Access Protection [NCS92a],

(13) A Guide to Understanding Object Reuse in Trusted Systems

[NCS92d], and

(14) A Guide to Understanding Security Modeling in Trusted Systems

[NCS92e].

B.3 Other Publications

The Center also publishes technical reports, computer security awareness

materials, computer security posters, and videotapes [NSA93b] and prepares

the Evaluated Products List [NSA93a, pp. 4-1{4-199].

82

C Products Evaluated by the Center

This appendix analyzes aggregate data on products evaluated by the Center,

relying primariy on data drawn from the Evaluated Products List.

Table 2 is a key to abbreviations for kinds of EPL product entries.57

These abbreviations are used in the EPL itself and in the other tables of

this appendix.

PB: Product Bulletin EPL entry.

OS: Operating System EPL entry.

AO: Ad-on EPL entry.

SS: Subsystem EPL entry.

N: Network EPL entry.

CMW: Compartmented Mode Workstation EPL entry.

DB: Database EPL entry.

RAMP: Rating Maintenance Phase EPL entry.

Table 2: Kinds of Evaluated Products List product entries.

It should be reasonably clear what OS's, N's, and DB's cover, but the

other kinds of EPL entries require explanation, which, in turn, presupposes

an account of the Center's Trusted Product Evaluation Program (TPEP)

[NSA93a, pp. 4-34{4-35].

The TPEP includes four evaluation phases | Vendor Assistance Phase

(VAP), Design Analysis Phase (DAP), Formal Evaluation (FE), and Rating

Maintenance Phase (RAMP).58

VAP [NSA93a, p. 4-34]:
a

57 The phrase \EPL product entries" may look redundant, but it's not. Besides product

entries, the Evaluated Products List contains a section titled \Publications Issued by the

Standards, Criteria and Guidelines Division" [NSA93a, pp. 4-188{4-190], the Endorsed

Tools List [NSA93a, pp. 4-191{4-197], and a section on Dockmaster [NSA93a, pp. 4-198{

4-199], \The National Computer Security Center's . . . unclassi�ed computer system . . .

established in 1985 as an Information Security Showplace" [NSA93a, pp. 4-199].
58There is also a preliminary Proposal Review Phase [NCS90b, pp. 7{16] during which

NSA's Information Systems Security Organization decides whether to devote resources to

evaluating a product and, if the decision is a�rmative, signs an appropriate legal agree-

ment with the product's vendor and assigns an evaluation team. However, the Proposal

Review Phase is not relevant to explaining what the entries of table 2 mean and will be

ignored in what follows.

83

. . . is the �rst of the three phases of a typical evaluation of an

operating system, network or network component. (Subsystems

move directly into Formal Evaluation.) During VAP, the NSA

serves primarily in an advisory capacity.

� � �

During VAP the vendor completes the development of the

product, designs security test procedures, and drafts documen-

tation while the NSA ensures that the vendor's documentation

of these e�orts re
ects an understanding of trust technology and

evaluation requirements as they are articulated in the Trusted

Computer System Evaluation Criteria (TCSEC).

During DAP, the second phase of evaluation [NSA93a, p. 4-34]:

. . . the product is largely completed and the evaluation team

develops a detailed understanding of the system, its security fea-

tures and its assurances.

. . . Products in Design Analysis must become commercially

available within twelve months of the start of this phase (if not

already available).

FE is the �nal phase of evaluation, in which [NSA93a, p. 4-34]:

. . . the evaluation team analyzes and tests the implementation's

compliance with the TCSEC requirements for the candidate level

of trust (or the requirements of an appropriate interpretation

of the TCSEC, such as the Trusted Network Interpretation).

The next step of the evaluation is the generation of the Final

Evaluation Report.

Beyond this [NSA93a, pp.4-34{4-35]:

Products evaluated at all levels of trust then continue with

the Rating Maintenance Phase. The purpose of this phase is to

provide the customer with current versions of trusted products.

The e�ect of the Rating Maintenance Phase is \Limited to maintenance of

a speci�c rating . . . " [NSA93a, p. 4-32].59

a

59Originally, RAMP was available only for C1, C2, and B1 evaluation class ratings

[NCS89c, p. 3], but the requirements for B2{A1 RAMP were published electronically on

September 30, 1992 on Dockmaster's announce forum (for Dockmaster, see note 57) and

the Center is preparing to circulate the �nal draft of a revised version of [NCS89c] for
comment [Ano93d].

84

It should be clear from the material of the preceding paragraph what

RAMP's are. PB's are \synopses of systems currently undergoing for-

mal evaluation" [NSA93a, p. 4-31]. It remains to explain AO's, SS's, and

CMW's.

AO's are relics of an earlier stage in the Trusted Product Evaluation

Program's development [NSA93a, p. 4-31]:

An add-on package is a facility that runs in conjunction with

a speci�c operating system and is not, by itself, a system that

performs all the functions traditionally ascribed to an operating

system. Initially, the evaluation of an add-on package did not

include a complete evaluation of the underlying operating system

for which the add-on package was designed. The evaluations

which were performed in that manner are identi�ed in the add-

on package section of [the EPL]. Evaluations of add-on systems

now include an equally thorough analysis of the security-relevant

mechanisms contained in the underlying operating system . . .

These systems are identi�ed in the operating systems section of

[the EPL].

As for SS's [NSA93a, p. 4-31]:

Subsystems are special-purpose products that can be added

to existing computer systems to increase security and implement

only a subset of the security features identi�ed in the [TCSEC].

Features we evaluate are identi�cation and authentication, au-

dit, access control, and object reuse. Subsystems are evaluated

against the Computer Security Subsystem Interpretation of the

[TCSEC]. The ratings assigned use a special nomenclature to

distinguish them from complete system ratings.

� � �

A subsystem evaluation is concerned only with the subsystem

product, and not any host system that it may support.

CMW's are unique, in that they stem from evaluations based jointly

on the Orange Book and the Defense Intelligence Agency's Security Re-

quirements for System High and Compartmented Mode Workstations. See

[NSA93a, p. 4-166] for further explanation. [CSE85c, pp. 2{3] gives de�ni-

tions of system high and compartmented security modes.

With these preliminary explanations in hand, the remainder of the ap-

pendix examines the Evaluated Products List in detail.

85

Table 3 shows product entries by kind and year for the January 1993

EPL [NSA93a, pp. 4-39{4-187].60

PB OS AO SS N CMW DB RAMP a Total
1984 0 1 2 0 0 0 0 0 a 3

1985 0 1 1 0 0 0 0 0 a 2

1986 0 3 0 4 0 0 0 0 a 7

1987 0 2 0 5 0 0 0 0 a 7

1988 0 4 0 7 0 0 0 0 a 11

1989 0 3 0 6 0 0 0 0 a 9

1990 0 2 0 3 1 0 0 1 a 7

1991 1 1 0 3 1 1 0 3 a 10

1992 5 4 0 3 0 0 0 2 a 14
a

Total 6 21 3 31 2 1 0 6 a 70

Table 3: Evaluated Products List product entries by kind and year.

C.1 Operating System Products Rated C1{A1

Due to the EPL's complex structure, data on operating system products

rated C1{A1 can be aggregated in several di�erent ways. Tables 4, 6, 7, 8,

and 9 are the results of applying �ve such methods of aggregation to the

data furnished by the EPL. Tables 10, 11, and 12 compare the di�erent

overviews of EPL data provided by tables 4, 6, 7, 8, and 9.

Table 4 shows operating system products by level of trust and year,

including products for which evaluation has been completed and products

in FE. The data aggregated are from the EPL Indices [NSA93a, pp. 4-3{4-

26]. Note that this data set is di�erent from the data set on which table 3

is based. Eventually, this di�erence leads to a prima facie con
ict between

the OS column total shown in table 3 and the most conservative estimate

given in this subsection of the number of operating system products rated

C1{A1. The apparent con
ict between these �gures is resolved in discussing

table 9.
a

60It may seem that the total of 63 �nal evaluation reports shown in table 1 of appendix B,

subsection B.1, should agree with the �gure 64 obtained by subtracting 6, the number of

PB's included in the January 1993 EPL, from the grand total of 70 product entries shown
in table 3. But this is not so | some reports listed in [NSA93b, pp. 10{13] refer to

products not included in the January 1993 EPL, and some entries in the January 1993

EPL do not cite a formal report and do not correspond to an entry in [NSA93b, pp. 10{13].
Hence, the proposed comparison of tables 1 and 3 is unfounded.

86

C1 C2 B1 B2 B3 A1 a Total
1984 1 1 0 0 0 1 a 3

1985 0 1 0 1 0 0 a 2

1986 0 3 0 0 0 0 a 3

1987 0 2 0 0 0 0 a 2

1988 0 4 0 0 0 0 a 4

1989 0 1 2 0 0 0 a 3

1990 0 1 2 0 0 0 a 3

1991 0 1 2 2 0 0 a 5

1992 0 4 4 1 1 0 a 10
a

Total 1 18 10 4 1 1 a 35

Table 4: Operating system products by level of trust and year, including

products for which evaluation has been completed and products in Formal

Evaluation.

Table 5 shows the number of RAMP's included in the data used in

constructing table 4. The data on which table 5 is based are drawn from

the EPL Indices [NSA93a, pp. 4-3{4-26].

C1 C2 B1 B2 B3 A1 a Total
1990 0 0 1 0 0 0 a 1

1991 0 1 2 0 0 0 a 3

1992 0 0 2 0 0 0 a 2
a

Total 0 1 5 0 0 0 a 6

Table 5: Rating Maintenance Phase Evaluated Products List entries in-

cluded in data used to prepare table 4.

Table 6 is the result of removing from table 4 the e�ect of the RAMP's

included in the data on which table 4 is based. The data used in preparing

table 6 are drawn from [NSA93a, pp. 4-3{4-26, 4-171, 4-174, 4-177, 4-180,

4-183, and 4-186] and [NSA93b, pp. 10{13].

The 1991 C2 RAMP shown in table 5 stems from a product that received

its rating in 1990. Accordingly, in preparing table 6, the 1991/C2 entry of

table 4 was decremented by 1 and the 1990/C2 entry was incremented by

the same amount. The 1990 B1 RAMP shown in table 5 stems from a

product that received its rating in 1989, so the 1990/B1 entry of table 4

was decremented by 1 and the 1989/B1 entry was incremented by 1. One

of the 1991 B1 RAMP's shown in table 5 traces back to the 1989 product

87

rating mentioned in the preceding sentence, and the other 1991 B1 RAMP

and both 1992 B1 RAMP's shown in table 5 originate from another product

rated B1 in 1989. Consequently, both the 1991/B1 and 1992/B1 entries of

table 4 were decremented by 2, and the 1989/B1 entry received an additional

increment of 1.

C1 C2 B1 B2 B3 A1 a Total
1984 1 1 0 0 0 1 a 3

1985 0 1 0 1 0 0 a 2

1986 0 3 0 0 0 0 a 3

1987 0 2 0 0 0 0 a 2

1988 0 4 0 0 0 0 a 4

1989 0 1 4 0 0 0 a 5

1990 0 2 1 0 0 0 a 3

1991 0 0 0 2 0 0 a 2

1992 0 4 2 1 1 0 a 8
a

Total 1 18 7 4 1 1 a 32

Table 6: Result of removing the e�ect of Rating Maintenance Phase Evalu-

ated Products List entries from table 4.

Table 7 shows the result of excluding EPL entries for products in FE

from the data used in preparing table 4, and table 8 shows the result of

excluding EPL entries for products in FE from the data used in preparing

table 6. The data used in constructing tables 7 and 8 are drawn from the

EPL indices [NSA93a, pp. 4-3{4-26]. In both cases, the 1991/B2 entry was

decremented by 1 and the 1992/C2 and 1992/B1 entries were decremented

by 2.

Table 9 shows the result of excluding AO's from the data used in prepar-

ing table 8. The data used in preparing table 9 are drawn from the EPL

Indices [NSA93a, pp. 4-3{4-26] and the Add-On EPL Entries section of the

EPL [NSA93a, pp. 4-107{4-113].

The di�erence between the grand total of 24 operating system products

arrived at in table 9 and the total of 21 such products shown in the OS

column of table 3 is traceable to the procedure employed in deriving table 6

from table 4. Viewed from the perspective of the data set used in preparing

table 3, [NSA93a, pp. 4-39{4-187], the overall e�ect of the procedure is to

increase the count of operating system products by 3, since the 6 RAMP's

noted in table 5 stem from 3 OS's that were present in earlier versions of

the EPL. This increase in the operating system products count carries down

88

C1 C2 B1 B2 B3 A1 a Total
1984 1 1 0 0 0 1 a 3

1985 0 1 0 1 0 0 a 2

1986 0 3 0 0 0 0 a 3

1987 0 2 0 0 0 0 a 2

1988 0 4 0 0 0 0 a 4

1989 0 1 2 0 0 0 a 3

1990 0 1 2 0 0 0 a 3

1991 0 1 2 1 0 0 a 4

1992 0 2 2 1 1 0 a 6
a

Total 1 16 8 3 1 1 a 30

Table 7: Result of excluding Evaluated Products List entries for products

in Formal Evaluation from data used in preparing table 4.

C1 C2 B1 B2 B3 A1 a Total
1984 1 1 0 0 0 1 a 3

1985 0 1 0 1 0 0 a 2

1986 0 3 0 0 0 0 a 3

1987 0 2 0 0 0 0 a 2

1988 0 4 0 0 0 0 a 4

1989 0 1 4 0 0 0 a 5

1990 0 2 1 0 0 0 a 3

1991 0 0 0 1 0 0 a 1

1992 0 2 0 1 1 0 a 4
a

Total 1 16 5 3 1 1 a 27

Table 8: Result of excluding Evaluated Products List entries for products

in Formal Evaluation from data used in preparing table 6.

89

C1 C2 B1 B2 B3 A1 a Total
1984 0 0 0 0 0 1 a 1

1985 0 0 0 1 0 0 a 1

1986 0 3 0 0 0 0 a 3

1987 0 2 0 0 0 0 a 2

1988 0 4 0 0 0 0 a 4

1989 0 1 4 0 0 0 a 5

1990 0 2 1 0 0 0 a 3

1991 0 0 0 1 0 0 a 1

1992 0 2 0 1 1 0 a 4
a

Total 0 14 5 3 1 1 a 24

Table 9: Result of excluding Add-on Evaluated Products List entries from

data used in preparing table 8.

through the derivation of table 9 from table 6 via table 8, thus accounting

for the di�erence between the grand total of table 9 and the OS column

total of table 3.

Table 10 compares the bottom lines of tables 4, 6, 7, 8, and 9.

C1 C2 B1 B2 B3 A1 Total

Table 4 1 18 10 4 1 1 35

Table 6 1 18 7 4 1 1 32

Table 7 1 16 8 3 1 1 30

Table 8 1 16 5 3 1 1 27

Table 9 0 14 5 3 1 1 24

Table 10: Bottom line comparison of tables 4, 6, 7, 8, and 9. Table 4 in-

cludes products in FE. Table 6 removes the e�ects of RAMP's from table 4.

Table 7 excludes products in FE from data used in preparing table 4. Ta-

ble 8 excludes products in FE from data used in preparing table 6. Table 9

excludes AO's from data used in preparing table 8.

Table 11 compares percentages of products rated at levels C1{A1 ac-

cording to tables 4, 6, 7, 8, and 9, and table 12 compares yearly averages of

operating system products evaluated derived from tables 4, 6, 7, 8, and 9.

90

C1 C2 B1 B2 B3 A1 Total

Table 4 2.86 51.43 28.57 11.43 2.86 2.86 100.01

Table 6 3.13 56.25 21.88 12.50 3.13 3.13 100.02

Table 7 3.33 53.33 26.67 10.00 3.33 3.33 99.99

Table 8 3.70 59.26 18.52 11.11 3.70 3.70 99.99

Table 9 0.00 58.33 20.83 12.50 4.17 4.17 100.00

Table 11: Comparison of percentages of products rated at levels C1{A1

according to tables 4, 6, 7, 8, and 9.

Table 4 Table 6 Table 7 Table 8 Table 9

Mean 3.89 3.56 3.33 3.00 2.67

Median 3 3 3 3 3

Modes 3 2,3 3 3 1

Modal Years 84,86,89,90 2:85,87,91 84,86,89,90 84,86,90 84,85,91

3:84,86,90

Table 12: Comparison of yearly averages of operating system products eval-

uated derived from tables 4, 6, 7, 8, and 9.

C.2 Other Products

Table 13 shows other products rated C1{A1, including those for which eval-

uation has been completed and those in FE. The data used in preparing

table 13 are from the EPL Indices [NSA93a, pp. 4-3{4-26].

Table 14 shows products in VAP and DAP. The data used in preparing

table 14 are from the EPL Indices [NSA93a, pp. 4-3{4-26].

91

C1 C2 B1 B2 B3 A1 a Total
N 1990 0 0 0 1 0 0 a 1

1991 0 0 0 0 0 1 a 1

1992 0 0 0 0 0 1 a 1

CMW 1991 0 0 1 0 0 0 a 1
a

Total 0 0 1 1 0 2 a 4

Table 13: Other products rated C1{A1, including those for which evaluation

has been completed and those in Formal Evaluation. The 1990 N, 1991 N,

and 1991 CMW entries are for completed evaluations, and the 1992 N entry

is for a product in FE.

N/A TBD C B A a Total
OS 0 10 1 3 0 a 14

N 0 2 0 2 1 a 5

CMW 0 1 0 3 0 a 4

DB 1 0 2 1 0 a 4
a

Total 1 13 3 9 1 a 27

Table 14: Products in Vendor Assistance Phase and Design Analysis Phase.

N/A: Not Applicable. TBD: To Be Determined. VAP �gures are in italics.

DAP �gures are in boldface. Dates for entering VAP range from September

5, 1990 through September 18, 1992. Dates for entering DAP range from

June 1, 1989 through November 10, 1992.

92

D Learning to Do It Right | From Autodin II

to Blacker

The following query, part of an e�ort to test the thesis of section 17, was

sent to Clark Weissman on December 10, 1993, together with a description

of the research on which this report is based [Pot93a]:

Both documentary evidence (Marv Schaefer's paper \Sym-

bol Security Condition Considered Harmful")61 and interview

evidence indicate that the design veri�cation activities required

at the A1 level tend to become dissociated from system construc-

tion. This tendency manifests itself in varying degrees, from an

extreme where design veri�cation is essentially epiphenomenal

(the veri�cation activity proceeds and so does system construc-

tion, but the former has little or no in
uence on the latter),

through intermediate cases where the design and veri�cation

group and the system construction group drift apart, despite

strong e�orts to integrate their activities, to cases where the

tendency seems to have been overcome.

I would appreciate it if you could tell me where, according to

your experience, the Blacker development falls within the range

of possibilities suggested in the preceding paragraph. (As I un-

derstand it, though not a commercial product, the system was

intended to satisfy the A1 requirements.) I am particularly in-

terested in the following points. (1) Did the tendency toward

dissociation manifest itself? If so: (2) How? (3) Why, in your

opinion? (4) What was done to combat it? (5) How successful

were the e�orts to combat it?

Weissman replied on December 10 [Wei93]:

First, some preamble.

System Development Corporation (SDC) invented the For-

mal Development Methodology (FDM) over a 10 year period

prior to and including Blacker. It was matured on a number

of earlier systems { Autodin II, KVM (Marv Schaefer used to
a

61Note written December 19, 1993: See [Sch89].

93

work for me at SDC), DTI's HUB, internal R&D projects, and

Blacker. During the earlier e�orts, we explored di�erent blends

of software and trust engineering | independent teams on each

thread, integrated teams, and places in between. In Autodin II,62

we gave courses to Ford Aerospace (now Loral) programmers on

FDM who then wrote the formal specs and code. We and they

found that a failure. The �eld of formal notations and mathe-

matical formalism was new and most programmers unaware of

its properties. The Ford programmers behaved just like SDC

programmers and used the Ina Jo State Description language

just as they used Jovial or Algol programming languages. They

had great di�culty with existential quanti�ers, with precision in

the state space and all predicates needed. [Dijkstra] is known

for saying that . . . programming is too di�cult for most of the

professionals.63 We saw exactly that. The formal specs were like

code, not math and impossible to comprehend, let alone prove.

So [the] \throwing it (formal specs) over the wall" method failed.

Next we tried doing it ourselves with skilled mathematicians

on the HUB,64 a proprietary kernel of a real-time operating sys-

tem for a 1970's style communications processor for the Defense

Communication Agency (now DISA). That was not a success

even though we did complete and prove the specs because of

your \dissociation" of teams. The FTLS and DTLS-Code were

in a race to �nish, and code won. As is typical in large program-

ming jobs, the code deviated from the DTLS and the DTLS was

not updated. In the end, the FTLS was being developed from

the code, a terrible form of \re-engineering." Lesson learned

there was that even smart people on both threads | FTLS &

DTLS-Code | didn't make for good development.

On KVM65 we integrated the team and succeeded. The prob-

lems were real | new constructs were needed in the FDM tools
a

62Author's note: For information on Autodin II, see [Wal82], [Lan83, Appendix A], and

[Jel85, pp. III-84{III-91]. According to [Lan83, Appendix A], \There were many problems
in its development, including a court �ght over the de�nition of `formal speci�cation'."

This court action, rather than the suit �led over VIPER [Mac91], seems to be the �rst

instance in which a disagreement about formal methods has led to litigation.
63Author's note: Ellipsis in original.
64Author's note: See [Lan83, Appendix A].
65Author's note: See [Lan83, Appendix A].

94

(which were being developed concurrently), parts of the KVM

architecture were new security approaches | virtualization |

and it was just hard to think trust. We had a great team, today's

leaders in the �eld scattered now in many companies. The key to

success was doing it right, not just doing it. We had the luxury

of a DARPA R&D contract and not a �xed-price contract, as we

�nd in today's market.

Now when Blacker began its A1 trek in 1984, there was much

experience in the SDC team in both the formal and design as-

pects (the �nal Blacker was based on 10 years of earlier R&D

on cryptographic applications to packet communications.) The

government also had great knowledge, experience, and desire to

achieve A1. Blacker attained A1 evaluation in 1991. [Here are]

my answers to your questions.

Q0. Where does Blacker fall . . . ?

A0. Blacker development was close to the fully integrated

side of the spectrum, but not all the way. There was a distinct

formal group and a more traditional software engineering group.

However, the two groups worked quite closely as noted below.

Q1. Tendency toward dissociation . . . ?

A1. Yes

Q2. How? Q3. Why?

A2. & 3. Schedule pressures tended to force development

forward unmercifully following the NSA NACSMs, a DOD-STD

2167A like \waterfall" development model, whereas the trust de-

velopment was closer to the Spiral Model of Barry Boehm [\A

Spiral Model of Software Development and Enhancement", Soft-

ware Engineering Notes, ACM, Vol 11, No.4, pp. 14{24, 1986].66

For example, proofs of [the] FTLS (or unproofs actually) would

require redesign iteration; code correspondence problems would

require DTLS & FTLS changes, Penetration Testing discovered

aws and covert channel analysis (CCA) leaks would spiral de-

sign back to a�ect [the] FTLS, etc. Like falling dominos, each

forward step would require some retreat. It was primarily the A1

security requirements that forced these iterations, and the teams
a

66Author's note: Citation and enclosing square brackets in original. Included in this
document's references as [Boe86].

95

would be stressed as management pushed for more progress on

deliverables.

Q4. What done to combat?

A4. There were many questions raised as to the worth of all

the formalism, i.e., A1 vs B3; even suggestions that an A0 class

be invented that had formal specs but no proofs. But many de-

sign examples [were] experienced to show that the need to prove

the specs forced \due diligence" on the whole process and on

team members to eliminate errors and security
aws. Many sub-

tle design [weaknesses] were �rst uncovered by the proof process.

From the beginning, all players on both contractor and govern-

ment sides were experienced, and the focus was on an A1 secure

system. A rigorous and detailed plan was developed with ade-

quate resources and time to do the job. We even built in 2.5

iterations [a la] the spiral model into all deliverables. For the

programmers, classes were held on the formal process, the Ina

Jo language, the FDM tool suite, etc. not to force them to write

formal specs | we learned from Autodin II | but to enable

them to read the formal specs and understand the design from a

security perspective. This was a key to doing it right. The for-

mal team was trained on the programming tools and methods.

In fact a common development environment was mutually agreed

upon to use SUN workstations and Unix servers for Con�gura-

tion Management and documentation. To integrate the teams

further, the formal team was required to do quality control on

all the specs and design documentation, and later the unit code.

Many hours of burned eyeballs were spent by the formal team

reading DTLS & code and uncovering problems early. Further,

the functional security testing was built into the integration test-

ing of Computer System Con�guration Items (CSCIs). Penetra-

tion Testing was led by the security team, but included major

elements of the software development team. Documentation was

extensive and written by all Blacker sta�, and read and reviewed

by them and by [the] government. Lastly, there were many un-

usual situations that arose during the �ve years of development

that required going back to �rst security principles to arrive at

solution. We found the contractor and the government cooper-

ating at such times to �nd the best overall solution | sometimes

[the] schedule slipped, sometimes security bent, sometimes [the]

96

design changed | in a trust engineering give and take.

Q5. How successful?

A5. Very. After 5 years of very detailed NCSC evaluation

of the Blacker system and security evidence, Blacker was ap-

proved for A1 application, and has served the world as an exam-

ple that it can be done. [See my paper "BLACKER: Security for

the DDN, Examples of A1 Security Engineering Trades," Proc.

IEEE Computer Society Symposium on Research in Security and

Privacy," May 1992, pp. 286-292.]67

a

67Author's note: Reference and enclosing square brackets in original. Included in this
document's references as [Wei92].

97

References

[Ada79] J. Adams. Computer security environment considerations.

Technical report, IBM Corporation, Arlington, Virginia, Au-

gust 1979. Contract MDA 903-79-C-0311.

[AGS83] Stanley R. Ames, Jr., Morrie Gasser, and Roger R. Schell. Secu-

rity kernel design and implementation: An introduction. Com-

puter, page 14, 1983.

[And72] J. P. Anderson. Computer security technology planning study.

Technical Report ESD-TR-73-51, Electronic Systems Division,

Air Force Systems Command, Hanscom AFB, October 1972.

Vol. I, AD-758206. Vol. II, AD-772806. Manifesto of security

kernel approach to computer security. Computer security usage

of \Trojan horse" introduced in Vol. II.

[Ano93a] NCSC sta� member Greene, telephone conversation, May 3,

1993. Other party: Garrel Pottinger. \Greene" is a pseudonym.

[Ano93b] NCSC sta� member Greenwood, telephone conversation, De-

cember 16, 1993. Other party: Garrel Pottinger. \Greenwood"

is a pseudonym.

[Ano93c] NCSC sta� member Greenwood, telephone conversation, May

3, 1993. Other party: Garrel Pottinger. \Greenwood" is a

pseudonym.

[Ano93d] NCSC sta� member Holmes, electronic mail, October 20, 1993.

Recipient: Garrel Pottinger. \Holmes" is a pseudonym.

[Ano93e] White, telephone conversation, October 28, 1993. Other party:

Garrel Pottinger. \White" is a pseudonym.

[Arm59] Department of the Army. OATH OF OFFICE - MILITARY

PERSONNEL. Printed by U.S.G.P.O, 1981{341-646/8552, Au-

gust 1 1959. DA FORM 71.

[Arm90] Department of the Army. Pamphlet 27-21, Update, September

18 1990.

98

[Bam82] James Bamford. The Puzzle Palace. Houghton Mi�in Com-

pany, 1982. British edition, The Puzzle Palace: America's

National Security Agency and its Special Relationship with

Britain's GCHQ, Sidgwick & Jackson, 1983, contains preface

describing Britain's Government Communications Headquarters

and giving account of Geo�rey Prime case. Only publically avail-

able general history of National Security Agency as of 1993.

[Bar80] John Bartlett. Familiar Quotations: A Collection of Passages,

Phrases and Proverbs Traced to Their Sources in Ancient and

Modern Literature. Little, Brown and Company, 1980. Fif-

teenth and 125th anniversary edition, revised and enlarged.

Edited by Emily Morison Beck and the editorial sta� of Lit-

tle, Brown and Company.

[BDF+86] Peter C. Baker, GeorgeW. Dinolt, JamesW. Freeman, M. Kren-

zin, and Richard B. Neely. A1 assurance for an internet system:

Doing the job. In Proceedings of the 9th National Computer Se-

curity Conference, pages 130{137. NBS/NCSC, 1986. Describes

Multinet Gateway.

[Bel88] D. Elliott Bell. Concerning `modeling' of computer security.

In Proceedings of the 1988 IEEE Symposium on Security and

Privacy, pages 8{13. IEEE Computer Society Press, 1988.

[Ben77] Robert L. Benson. An interview with the Agency's new Direc-

tor. National Security Agency Newsletter, pages 4{5, September

1977. Interview with Vice Admiral B. R. Inman.

[BHP87] Wiebe E. Bijker, Thomas P. Huges, and Trevor J. Pinch, editors.

The Social Construction of Technological Systems: New Direc-

tions in the Sociology and History of Technology. MIT Press,

1987.

[Bib77] K. J. Biba. Integrity considerations for secure computer sys-

tems. Technical Report ESD-TR-76-372, Electronic Systems

Division, Air Force Systems Command, 1977. AD-A039324.

[Boe86] Barry Boehm. A spiral model of software development and en-

hancement. Software Engineering Notes, 11(4):14{24, 1986.

99

[Boe88] W. E. Boebert. Constructing an Infosec system using LOCK

technology. Technical report, National Computer Security Cen-

ter, October 1988.

[Bon93a] Carles H. Bonneau, telephone conversation, April 30, 1993.

Other party: Garrel Pottinger.

[Bon93b] Interview with Charles H. Bonneau, November 20, 1993. Inter-

viewer: Garrel Pottinger.

[BP74a] D. E. Bell and L. J. La Padula. Secure computer systems: Math-

ematical foundations and model. Technical Report M74-244,

MITRE, October 1974. Paper presented at Far Western Con-

ference of Society for General Systems, Sacramento, October

24{25, 1974. Essential source for information on how Bell/La

Padula model was developed.

[BP74b] D. E. Bell and L. J. La Padula. Secure computer systems: Math-

ematical foundations; a mathematical model; a re�nement of the

mathematical model. Technical Report ESD-TR-73-278, Elec-

tronic Systems Division, Air Force Systems Command, Novem-

ber 1973{April 1974. In three volumes. Vols. I and II, November

1973. Vol. III, April 1974. D. E. Bell sole author of Vol. III. Vol.

I, AD-770768. Vol. II, AD-771543. Vol. III, AD-780528. Also

published as MITRE Technical Report MTR-2547. MTR-2547,

Vol. I, March 1973. MTR-2547, Vol. II, May 1973. MTR-2547,

Vol. III, December 1973. Simple security property only in Vol.

I. Vol. II introduced *-property. Vol. III introduced trusted sub-

jects.

[BP75] D. E. Bell and L. J. La Padula. Secure computer systems: Uni-

�ed exposition and Multics interpretation. Technical Report

MTR-2997, MITRE, July 1975. AD-A020445. Verso of p. 69

blank. Preliminary version of security model intended for use in

design of unbuilt Project Guardian version of Multics including

security kernel.

[BP76] D. E. Bell and L. J. La Padula. Secure computer systems: Uni-

�ed exposition and Multics interpretation. Technical Report

ESD-TR-75-306, ESD/AFSC, Hanscom AFB, 1976. Revision 1

of MITRE Technical Report MTR-2997. AD-A023588. Security

100

model intended for use in design of unbuilt Project Guardian

version of Multics including security kernel.

[Bro85] Congressman Jack Brooks. Statement of on National Security

Decision Directive 145 before the Subcommittee on Transporta-

tion, Aviation and Materials, Committee on Science and Tech-

nology, June 27, 1985. Reprinted in United States House of Rep-

resentatives, Computer Security Act of 1987: Hearings before

a Subcommittee of the Committee on Government Operations,

House of Representatives, 100th Congress, First Session, on H.

R. 145 . . . , February 25, 26, and March 17, 1987, pp. 524{527.

[Car78] Jim Carlstedt. Protection errors in operating systems: A se-

lected annotated bibliography and index to terminology. Tech-

nical Report ISI/SR-78-10, University of Southern California

Information Sciences Institute, 1978. AD-A053016.

[Car87a] Frank C. Carlucci, Assistant to the President for National Se-

curity A�airs. Letter to Congressman Jack Brooks, March 12,

1987. Printed in United States House of Representatives, Com-

puter Security Act of 1987: Hearings before a Subcommittee of

the Committee on Government Operations, House of Represen-

tatives, 100th Congress, First Session, on H. R. 145 . . . , Febru-

ary 25, 26, and March 17, 1987, 1987, p. 386.

[Car87b] Frank C. Carlucci, Assistant to the President for National Se-

curity A�airs. Letter to Congressman Jack Brooks, March 17,

1987. Printed in United States House of Representatives, Com-

puter Security Act of 1987: Hearings before a Subcommittee of

the Committee on Government Operations, House of Represen-

tatives, 100th Congress, First Session, on H. R. 145 . . . , Febru-

ary 25, 26, and March 17, 1987, 1987, pp. 388{389.

[CGR93a] Dan Craigen, Susan Gerhart, and Ted Ralston. An international

survey of industrial applications of formal methods, volume 1:

Purpose, approach, analysis, and conclusions. Technical report,

Computer Systems Laboratory, National Institute of Standards

and Technology, March 1993.

[CGR93b] Dan Craigen, Susan Gerhart, and Ted Ralston. An international

survey of industrial applications of formal methods, volume 2:

101

Case studies. Technical report, Computer Systems Laboratory,

National Institute of Standards and Technology, March 1993.

[Con80a] United States Congress. The Paperwork Reduction Act of 1980,

December 11, 1980. P. L. 96-511.

[Con80b] EdwardW. Constant II. The Origins of the Turbojet Revolution.

Johns Hopkins University Press, 1980.

[Con88] United States Congress. The Computer Security Act of 1987,

January 8, 1988. P. L. 100-235.

[Cou91] National Research Council. Computers at Risk: Safe Computing

in the Information Age. National Academy Press, 1991.

[Cri91] Michael Crichton. Jurassic Park. Random House, 1991. Arrow

edition. Shows awareness of trap doors has seeped into popular

culture. See pp. 175 and 230.

[CSE82] DoD Computer Security Evaluation Center. Trusted Computer

System Evaluation Criteria, 1st Draft, May 24, 1982. Circu-

lated for comment. Third stage in development of Orange Book

criteria, following Lee report drafted in 1978 and October 1979

Nibaldi report.

[CSE83a] DoD Computer Security Evaluation Center. Product evaluation

bulletin on the Secure Communications Processor (SCOMP) of

Honeywell Information Systems, Inc., April 15, 1983. CSC-PB-

01-83.

[CSE83b] DoD Computer Security Evaluation Center. Trusted Computer

System Evaluation Criteria, January 25, 1983. Final draft.

Green cover. Fourth stage in development of Orange Book cri-

teria. Second draft of Orange Book produced by DoD CSEC.

[CSE83c] DoD Computer Security Evaluation Center. Trusted Computer

System Evaluation Criteria, August 15, 1983. CSC-STD-001-

83. Orange cover. Fifth stage in development of Orange Book

criteria. Third draft of Orange Book produced by produced by

DoD CSEC. First version of Orange Book issued for use in eval-

uations.

102

[CSE85a] DoD Computer Security Evaluation Center. Guidance for Ap-

plying the DoD Trusted Computer System Evaluation Criteria

in Speci�c Environments, June 25, 1985. CSC-STD-003-85. Yel-

low cover.

[CSE85b] DoD Computer Security Evaluation Center. Password Man-

agement Guidelines, April 12, 1985. CSC-STD-002-85. Green

cover.

[CSE85c] DoD Computer Security Evaluation Center. Technical Ra-

tionale Behind CSC-STD-003-85: Computer Security Require-

ments, June 25, 1985. CSC-STD-004-85. Yellow cover.

[CSS89] Canadian System Security Centre. Canadian Trusted Computer

Product Evaluation Criteria, May 1989. Draft.

[Dan90a] Richard A. Danca. Bush revises NSDD 145. Federal Computer

Week, page 6, July 16, 1990.

[Dan90b] Richard A. Danca. NCSC a�rms shakeup in its structure. Fed-

eral Computer Week, page 1, August 27, 1990.

[Dan90c] Richard A. Danca. NCSC decimated, security role weakened.

Federal Computer Week, page 1, July 16, 1990.

[Dij69] Edsger W. Dijkstra. Complexity controlled by hierarchical or-

dering of function and variability. In Peter Naur and Brian

Randell, editors, Software Engineering: Report on a Conference

Sponsored by the NATO Science Committee, Garmisch, Ger-

many, 7th to 11th October 1968, pages 181{185. NATO Scien-

ti�c A�airs Division, 1969.

[Dij82] Edsger W. Dijkstra. Selected Writings on Computing: A Per-

sonal Perspective. Springer-Verlag, 1982.

[DoD82a] Information Security Program Regulation, August 1982. Direc-

tive 5200.1-R.

[DoD82b] United States Department of Defense. Computer Security Eval-

uation Center, October 25, 1982. Directive 5215.1.

103

[DS79] J. B. DeWolf and P. A. Szulewski, editors. Final Report of

the 1979 Summer Study on Air Force Computer Security, Cam-

bridge, Massachusetts, October 1979. The Charles Stark Draper

Laboratory, Inc.

[EC91] Information Technology Security Evaluation Criteria (ITSEC),

June 1991. Harmonised Criteria of France, Germany, the

Netherlands, and the United Kingdom, Version 1.2. Printed and

published by the Department of Trade and Industry, London.

[ESD74] ESD 1974 computer security development summary. Interim

report MCI-75-1, United States Air Force, Electronic Systems

Division, Air Force Systems Command, December 31, 1974.

[Fau81] L. D. Faurer. Keeping the secrets secret. Government Data

Systems, pages 14{17, November{December 1981.

[FC71] R. M. Fano and F. J. Corbat�o. Time-sharing on computers. In

Robert R. Fenichel and Joseph Weizenbaum, editors,Computers

and Computation, pages 78{87. W. H. Freeman and Company,

1971. Readings from Scienti�c American.

[FH93] Jon Fellows and Judy Hemenway, electronic mail, December 21,

1993. Recipient: Garrel Pottinger.

[Flo67] R. W. Floyd. Assigning meanings to programs. In Proceedings

of a Symposium on Applied Mathematics (Mathematical Aspects

of Computer Science), pages 19{32. American Mathematical So-

ciety, 1967.

[Fra83] L. J. Fraim. Scomp: A solution to the multilevel security prob-

lem. IEEE Computer, 16(7):26{34, July 1983.

[FW71] Robert R. Fenichel and Joseph Weizenbaum, editors. Comput-

ers and Computation. W. H. Freeman and Company, 1971.

Readings from Scienti�c American.

[GM82] Joseph A. Goguen and Jos�e Meseguer. Security policies and

security models. In Proceedings of the 1982 Berkeley Conference

on Computer Security, pages 11{22. IEEE Computer Society

Press, 1982.

104

[Goo91a] Interview with Donald I. Good, May 16, 1991. Interviewer:

Elo�ina Pel�aez.

[Goo91b] Interview with Donald I. Good, November 12, 1991. Inter-

viewer: Margaret Tierney.

[Goo93] Interview with Donald I. Good, March 23, 1993. Interviewer:

Garrel Pottinger.

[Gor85] M. Gordon. HOL: A machine oriented formulation of higher-

order logic. Technical Report 68, University of Cambridge Com-

puter Laboratory, July 1985. Revised version.

[GvN47] Herman H. Goldstine and John von Neumann. Planning and

coding of problems for an electronic computing instrument, part

ii, volume 1. Technical report, The Institute for Advanced

Study, April 1947. Reprinted in A. H. Taub (ed.), John von

Neumann Collected Works: Volume V, Design of Computers,

Theory of Automata, and Numerical Analysis, Pergamon Press,

1961.

[H+92] Paul Hudak et al. Report on the programming language Haskell:

A nonstrict, purely functional language version 1.2. SIGPLAN

Notices, 27, May 1992.

[Hai93] Interview with J. Thomas Haigh, March 12, 1993. Interviewer:

Garrel Pottinger.

[Har93a] Bret Hartman, telephone conversation, April 29, 1993. Other

party: Garrel Pottinger.

[Har93b] Bret Hartman, telephone conversation, October 11, 1993. Other

party: Garrel Pottinger.

[Har93c] Interview with Bret Hartman, February 2, 1993. Interviewer:

Garrel Pottinger.

[Hen82] Peter Henderson. Purely functional operating systems. In John

Darlington, Peter Henderson, and David A. Turner, editors,

Functional Programming and its Applications, pages 177{189.

Cambridge University Press, 1982.

105

[HF92] Paul Hudak and Joseph H. Fasel. A gentle introduction to

Haskell. SIGPLAN Notices, 27, May 1992.

[HKMY86] J. Thomas Haigh, Richard A. Kemmerer, John Mchugh, and

William D. Young. An experience using two covert channel

analysis techniques on a real system design. In Proccedings of

the 1986 IEEE Symposium on Security and Privacy, pages 14{

24. IEEE Computer Society Press, 1986.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming.

Communications of the ACM, 12:576{583, 1969.

[HOLa] Cambridge Research Center of SRI International. The HOL

System Description. Distributed with version 1.12 of the HOL

system.

[HOLb] Cambridge Research Center of SRI International. The HOL

System Reference Manual. Distributed with version 1.12 of the

HOL system.

[HOLc] Cambridge Research Center of SRI International. The HOL

System Tutorial. Distributed with version 1.12 of the HOL sys-

tem.

[Hug83] Thomas P. Huges. Networks of Power: Electri�cation in West-

ern Society, 1880{1930. Johns Hopkins University Press, 1983.

[Hug87] Thomas P. Huges. The evolution of large technological systems.

In Wiebe E. Bijker, Thomas P. Huges, and Trevor J. Pinch,

editors, The Social Construction of Technological Systems: New

Directions in the Sociology and History of Technology, pages

51{82. MIT Press, 1987.

[HY86] J. Thomas Haigh and William D. Young. Extending the non-

interference version of MLS for SAT. In Proccedings of the

1986 IEEE Symposium on Security and Privacy, pages 232{239.

IEEE Computer Society Press, 1986.

[Inm80] B. R. Inman. Managing intelligence for e�ective use. In Sem-

inar on Command, Control, Communications and Intelligence.

Center for Information Policy Research, Program on Informa-

tion Resources Policy, Harvard, 1980.

106

[ITT78] ITT DCD. System speci�cation for SAC Digital Network

(SACDIN), 1978. ESD-MCV-1A.

[Jel85] George F. Jelen. Information Security: An Elusive Goal. Pro-

gram on Information Resources Policy, Harvard, June 1985.

Stephen T. Walker's draft charter for Federal computer secu-

rity evaluation center located at NBS printed on pp. V-2{V-9.

January 2, 1981 memorandum from Deputy Secretary of De-

fense W. Graham Claytor, Jr. containing noti�cation of deci-

sion to establish DoD Computer Security Evaluation Center at

NSA printed on p. V-10. DoD Directive 5215.1 and enclosures

reprinted on pp. V-11{V-17. Unclassi�ed version of NSDD 145

reprinted on pp. V-18{V-27.

[Kuh62] Thomas S. Kuhn. The Structure of Scienti�c Revolutions. Uni-

versity of Chicago Press, 1962.

[KZB+90] Paul A. Karger, Mary Ellen Zurko, Douglas W. Bonin, An-

drew H. Mason, and Cli�ord E. Kahn. A VMM security ker-

nel for the VAX architecture. In 1990 IEEE Computer Society

Symposium on Research in Security and Privacy, pages 2{19.

IEEE Computer Society Press, 1990. Describes DEC prototype

intended for evaluation at A1. Prototype called VAX SVS (Se-

cure Virtual System) at DEC; called SKVAX by NCSC, but not

refered to this way at DEC.

[L+80] T. M. P. Lee et al. Processors, operating systems, and nearby

peripherals. In Z. Ruthberg, editor, Audit and Evaluation

of Computer Security II: System Vulnerabilities and Controls,

pages 8{1{8{28. NBS, April 1980. Special publication # 500-57.

MD78733. Proceedings of an invitational workshop held Novem-

ber 1978. Manifesto of DoD Computer Security Initiative. In-

cludes �rst stage in development of Orange Book criteria.

[Lam73] B. W. Lampson. A note on the con�nement problem. Commu-

nications of the ACM, 16(10):613{615, October 1973.

[Lan81] Carl E. Landwehr. Formal models for computer security. ACM

Computing Surveys, 13, 1981.

[Lan83] Carl E. Landwehr. The best available technologies for computer

security. IEEE Computer, 16:86{100, July 1983. Tables 1 and

107

2 and Appendix A summarize base of experience with secure

systems available to guide choice of Orange Book proof require-

ments. Reprinted in Rein Turn (ed.), Advances in Computer

System Security, Volume II, Artech House, 1984, pp. 76-107.

[Law87] John Law. Technology and heterogeneous engineering: The case

of Portuguese expansion. In Wiebe E. Bijker, Thomas P. Huges,

and Trevor J. Pinch, editors, The Social Construction of Tech-

nological Systems: New Directions in the Sociology and History

of Technology, pages 111{134. MIT Press, 1987.

[LBMC93] Carl E. Landwehr, Alan R. Bull, John P. McDermott, and

William S. Choi. A taxonomy of computer program security

aws, with examples. Technical Report NRL/5542{93-9591,

Center for Computer High Assurance Systems, Information

Technology Division, Naval Research Laboratory, November 19,

1993.

[Lew78] Ronald Lewin. ULTRA Goes to War. Pocket Books, 1978.

First published by Hutchinson & Co., 1978. Provides valuable

illustration of importance of need to know principle.

[LHM84] Carl E. Landwehr, Constance L. Heitmeyer, and John McLean.

A security model for military message systems. ACM Transac-

tions on Computer Systems, 2:198{222, 1984.

[Lip93] Stephen Lipner, electronic mail, October 22, 1993. Recipient:

Garrel Pottinger.

[LPS89] Timothy E. Levin, Stephen J. Padilla, and Roger R. Schell.

Engineering results from the A1 formal veri�cation process. In

Proceedings of the 12th National Computer Security Conference,

pages 65{74. Defense Technical Information Center, 1989.

[LTP90] Timothy E. Levin, Albert Tao, and Stephen J. Padilla. Covert

storage channel analysis: A worked example. In Proceedings of

the 13th National Computer Security Conference, pages 10{19.

Defense Technical Information Center, 1990.

[Mac87] Donald Mackenzie. Missle accuracy: A case study in the so-

cial processes of technological change. In Wiebe E. Bijker,

108

Thomas P. Huges, and Trevor J. Pinch, editors, The Social Con-

struction of Technological Systems: New Directions in the So-

ciology and History of Technology, pages 195{222. MIT Press,

1987.

[Mac90] Donald MacKenzie. Inventing Accuracy: A Historical Sociology

of Nuclear Missle Guidance. MIT Press, 1990.

[Mac91] Donald MacKenzie. The fangs of the VIPER. Nature, 352:467{

469, 1991.

[McC87] Daryl McCullough. Speci�cations for multilevel security and a

hook-up property. In Proceedings of the 1987 Symposium on

Security and Privacy, April 1987.

[McC88] Daryl McCulough. Foundations of Ulysses: The theory of secu-

rity. Technical Report RADC-TR-87-222, Rome Air Develop-

ment Center, July 1988. Interim report.

[McC93] Interview with Daryl McCullough, February 3, 1993. Inter-

viewer: Garrel Pottinger.

[McL87] John McLean. Reasoning about security models. In Proceedings

of the 1987 IEEE Symposium on Security and Privacy, pages

123{131. IEEE Computer Society Press, 1987.

[Men79] Elliott Mendelson. Introduction to Mathematical Logic. D. Van

Nostrand Company, 1979. Second edition.

[Mok90] Joel Mokyr. The Lever of Riches: Technological Creativity and

Economic Progress. Oxford University Press, 1990.

[NCS85a] National Computer Security Center. Final Evaluation Report,

Secure Communications Processor (SCOMP), STOP Release

2.1, 1985. CSC-EPL-85/001.

[NCS85b] National Computer Security Center. Trusted Computer System

Evaluation Criteria, December 26, 1985. DoD 5200.28-STD.

The Orange Book. Supersedes CSC-STD-001-83. Orange cover.

Sixth, and �nal, stage in criteria development, preceded by cri-

teria of Lee report drafted in 1978, October 1979 Nibaldi report,

DoD CSEC Orange Book drafts of May 24, 1982 and January

109

25, 1983, and CSC-STD-001, issued August 15, 1983 by DoD

CSEC for use in evaluations. Di�erences between Orange Book

and CSC-STD-001-83 are minor.

[NCS86] DoD STANDARD 5200.28: SUMMARY OF THE DIFFER-

ENCES BETWEEN IT AND CSC-STD-001-83, 1986. Enclo-

sure accompanying Sheila L. Brand, DoD 5200.28-STD, Sum-

mary of Changes, memorandum for the record, July 3, 1986.

Orange Book was other enclosure.

[NCS87a] National Computer Security Center. A Guide to Understanding

Audit in Trusted Systems, July 28, 1987. NCSC-TG-001. Tan

cover.

[NCS87b] National Computer Security Center. A Guide to Understanding

Discretionary Access Control in Trusted Systems, September 30,

1987. NCSC-TG-003. Orange cover.

[NCS87c] National Computer Security Center. Trusted Network Interpre-

tation, July 31, 1987. NCSC-TG-005, Version 1. Red cover.

[NCS88a] National Computer Security Center. Computer Security Sub-

system Interpretation of the Trusted Computer System Evalua-

tion Criteria, September 16, 1988. NCSC-TG-009. Venice blue

cover.

[NCS88b] National Computer Security Center. Glossary of Computer Se-

curity Terms, October 21, 1988. NCSC-TG-004, Version 1.

Aqua cover.

[NCS88c] National Computer Security Center. A Guide to Understanding

Con�guration Management in Trusted Systems, March 28, 1988.

NCSC-TG-006, Version 1. Orange cover.

[NCS88d] National Computer Security Center. A Guide to Understanding

Design Documentation in Trusted Systems, October 6, 1988.

NCSC-TG-007, Version 1. Burgundy cover.

[NCS88e] National Computer Security Center. A Guide to Understanding

Trusted Distribution in Trusted Systems, December 15, 1988.

NCSC-TG-008. Lavender cover.

110

[NCS89a] National Computer Security Center. A Guide to Understanding

Trusted Facility Management, October 18, 1989. NCSC-TG-

015, Version 1. Brown cover.

[NCS89b] National Computer Security Center. Guidelines for Formal Ver-

i�cation Systems, April 1, 1989. NCSC-TG-014. Purple cover.

[NCS89c] National Computer Security Center. Rating Maintenance Phase

Program Document, June 23, 1989. NCSC-TG-013, Version 1.

Hot pink cover.

[NCS89d] National Computer Security Center. Trusted UNIX Working

Group (TRUSIX) Rationale for Selecting Access Control List

Features for the UNIX� System, August 18, 1989. NCSC-TG-

020A, Version 1. Gray cover.

[NCS90a] National Computer Security Center. Trusted Network Interpre-

tation Environments Guideline, August 1, 1990. NCSC-TG-011,

Version 1. Red cover.

[NCS90b] National Computer Security Center. Trusted Product Evalu-

ations | Guide for Vendors, June 22, 1990. NCSC-TG-002,

Version 1. Bright blue cover.

[NCS91a] National Computer Security Center. Final Evaluation Report,

Boeing Space and Defense Group, MSL LAN Secure Network

Server System, 1991. CSC-EPL-91/005.

[NCS91b] National Computer Security Center. A Guide to Understanding

Data Remanence in Automated Information Systems, Septem-

ber, 1991. NCSC-TG-025, Version 2. Green cover.

[NCS91c] National Computer Security Center. A Guide to Understanding

Identi�cation and Authentication in Trusted Systems, Septem-

ber 1, 1991. NCSC-TG-017, Version 1. Light blue cover.

[NCS91d] National Computer Security Center. A Guide to Understand-

ing Trusted Recovery in Trusted Systems, December 30, 1991.

NCSC-TG-022. Yellow cover.

[NCS91e] National Computer Security Center. A Guide to Writing the

Security Features User's Guide for Trusted Systems, September,

1991. NCSC-TG-026, Version 1. Hot peach cover.

111

[NCS91f] National Computer Security Center. Trusted Database Manage-

ment System Interpretation, April, 1991. NCSC-TG-021, Ver-

sion 1. Lavender cover.

[NCS92a] National Computer Security Center. Assessing Controlled Ac-

cess Protection, May, 1992. NCSC-TG-028, Version 1. Violet

cover.

[NCS92b] National Computer Security Center. A Guide to Procurement

of Trusted Systems: An Introduction to Procurement Initiators

on Computer Security Requirements, December, 1992. NCSC-

TG-024. Purple cover.

[NCS92c] National Computer Security Center. A Guide to Understanding

Information System Security O�cer Responsibilities for Auto-

mated Information Systems, May, 1992. NCSC-TG-027, Version

1. Turquoise cover.

[NCS92d] National Computer Security Center. A Guide to Understanding

Object Reuse in Trusted Systems, July, 1992. NCSC-TG-018.

Light blue cover.

[NCS92e] National Computer Security Center. A Guide to Understanding

Security Modeling in Trusted Systems, October, 1992. NCSC-

TG-010. Aqua cover.

[NCS92f] National Computer Security Center. Guidelines for Writing

Trusted Facility Manuals, October, 1992. NCSC-TG-016, Ver-

sion 1. Yellow-green cover.

[NCS92g] National Computer Security Center. Trusted Product Evalua-

tion Questionnaire, May 2, 1992. NCSC-TG-019, Version 2.

Blue cover.

[Nib79a] G. H. Nibaldi. Proposed technical evaluation criteria for trusted

computer systems. Technical Report M79-225, MITRE, Octo-

ber 25, 1979. AD-A108-832. Second stage in development of

Orange Book criteria, following Lee report drafted in 1978.

[Nib79b] G. H. Nibaldi. Speci�cation of a trusted computing base (TCB).

Technical Report M79-228, MITRE, November 30, 1979. AD-

A108-831. Apparent source of phrase \trusted computing base"

and its de�nition.

112

[NIS92a] National Institute of Standards and Technology and National

Security Agency. Federal Criteria for Information Technology

Security, Volume I: Protection Pro�le Development, December

1992. Version 1.0. Circulated for comment.

[NIS92b] National Institute of Standards and Technology and National

Security Agency. Federal Criteria for Information Technology

Security, Volume II: Registry of Protection Pro�les, December

1992. Version 1.0. Circulated for comment.

[NIS93] National Institute of Standards and Technology and National

Security Agency. Proceedings of the 16th National Computer

Security Conference, September 20{23, 1993.

[NMT87] National Manager for Telecommunications and Automated In-

formation Systems Security. Advisory Memorandum on O�ce

Automation Security Guideline, January 16, 1987. NTISSAM

COMPUSEC/1-87. White document.

[NR69] Peter Naur and Brian Randell, editors. Software Engineering:

Report on a Conference Sponsored by the NATO Science Com-

mittee, Garmisch, Germany, 7th to 11th October 1968. NATO

Scienti�c A�airs Division, 1969. The \software crisis" confer-

ence.

[NS72] Alan Newell and Herbert A. Simon. Human Problem Solving.

Prentice-Hall, 1972.

[NSA77] Vice Admiral B. R. Inman becomes Agency Director. National

Security Agency Newsletter, July 1977. Page 2.

[NSA86] National Security Agency. NSA Information Security Reorga-

nization, April 24, 1986. Announced �rst stage in dismantling

evaluation center structure worked out by Walker and Inman.

Printed in United State House of Representatives, Computer

Security Act of 1987: Hearings before a Subcommittee of the

Committee on Government Operations, House of Representa-

tives, 100th Congress, First Session, on H. R. 145 . . . , February

25, 26, and March 17, 1987, 1987, p. 548.

113

[NSA93a] National Security Agency. Information Systems Security Prod-

ucts and Services Catalogue, January 1993. See pp. 4-1{4-199

for the Evaluated Products List.

[NSA93b] National Security Agency INFOSEC Awareness Division. COM-

PUSEC DOCUMENTS, April 1993.

[NSD84] National Policy on Telecommunications and Automated Infor-

mation Systems Security, September 17, 1984. National Secu-

rity Decision Directive 145 (NSDD 145). 10 pp., unclassi�ed

in part. Unclassi�ed version reprinted in United State House

of Representatives, Computer Security Act of 1987: Hearings

before a Subcommittee of the Committee on Government Opera-

tions, House of Representatives, 100th Congress, First Session,

on H. R. 145 . . . , February 25, 26, and March 17, 1987, 1987,

pp. 528{537.

[Org72] O. Organick. The Multics System: An Examination of its Struc-

ture. MIT Press, 1972.

[Par72] D. L. Parnas. A technique for software module speci�cation

with examples. Communications of the ACM, 15(5):330{336,

May 1972. A fundamental source for ideas involved in design

veri�cation.

[Par85] D. L. Parnas. Software aspects of strategic defense systems.

American Scientist, 73(5):432{440, 1985.

[PB72] L. J. La Padula and D. E. Bell. Harmonious cooperation of

processes operating on a common set of data. Technical Re-

port MTR-2254, MITRE, February 1972{May 1972. In three

volumes. Vol. I, February 1972. Vol. II, March 1972. Vol. III,

May 1972. L. J. La Padula sole author of Vol. I. D. E. Bell sole

author of Vol. II. Vol. III jointly authored. Vol. I, AD-757902.

Vol. II, AD-757903. Vo.l III, AD-757904.

[PD77] Presidential Directive/NSC 24 (PD 24). Telecommunications

Protection Policy, November 16, 1977. 5 pp., unclassi�ed in

part. Unclassi�ed version issued February 9, 1979.

[Pet92] H. Petroski. To Engineer is Human: The Role of Failure in

Successful Design. Vintage Books, 1992.

114

[Pla93] Interview with Richard Platek, February 4, 1993. Interviewer:

Garrel Pottinger.

[Pot93a] Garrel Pottinger, electronic mail, December 10, 1993. Recipient:

Clark Weissman.

[Pot93b] Garrel Pottinger, electronic mail, October 21, 1993. Recipient:

Stephen Lipner.

[Pot93c] Garrel Pottinger, facsimile, November 17, 1993. Recipient:

Ham, NSA Public A�airs O�ce, Information and Policy Branch.

\Ham" is a pseudonym.

[Pot93d] Garrel Pottinger, telephone conversation, November 16, 1993.

Other party: Ham, NSA Public A�airs O�ce, Information and

Policy Branch. \Ham" is a pseudonym.

[Qui91] P. Quintas. Engineering solutions to software problems: Some

institutional and social factors shaping change. In Technology

Analysis & Strategic Management, 1991.

[Rep87a] United States House of Representatives. The Computer Se-

curity Act of 1987: Hearing before the Subcommittee on Sci-

ence, Research, and Technology and the Subcommittee on Trans-

portation, Aviation, and Materials of the Committee on Sci-

ence, Space, and Technology, House of Representatives, 100th

Congress, First Session, February 26, 1987. U.S.G.P.O., 1987.

NTISSP 2, the Poindexter memorandum, reprinted on pp. 37{

40.

[Rep87b] United States House of Representatives. Computer Security

Act of 1987: Hearings before a Subcommittee of the Commit-

tee on Government Operations, House of Representatives, 100th

Congress, First Session, on H. R. 145 . . . , February 25, 26, and

March 17, 1987. U.S.G.P.O., 1987.

[Rep89] United States House of Representatives. Implementation of

the Computer Security Act: Hearing before the Subcommit-

tee on Transportation, Aviation, and Materials of the Com-

mittee on Science, Space, and Technology, House of Represen-

tatives, 100th Congress, Second Session, September 22, 1988.

U.S.G.P.O., 1989.

115

[Rep90] United States House of Representatives. Implementation of the

Computer Security Act (Public Law 100-235): Hearing before

the Subcommittee on Transportation, Aviation and Materials of

the Committee on Science, Space, and Technology, United States

House of Representatives, 101st Congress, Second Session, July

10, 1990. U.S.G.P.O, 1990.

[Rep91] United States House of Representatives. Computer Security:

Hearing before the Subcommittee on Technology and Competi-

tiveness of the Committee on Science, Space, and Technology,

United States House of Representatives, 102nd Congress, First

Session, June 27, 1991. U.S.G.P.O, 1991.

[Rep92] United States House of Representatives. Computer Security Act

of 1987. U.S.G.P.O., 1992. Report prepared by the Subcom-

mittee on Technology and Competitiveness, transmitted to the

Committee on Science, Space, and Technology, House of Repre-

sentatives, 102nd Congress, Second Session, July 1992.

[RM77] Z. Ruthberg and R. McKenzie, editors. Audit and Evaluation of

Computer Security. National Bureau of Standards, NBS Special

Publication #500-19, October 1977. Proceedings of NBS invi-

tational workshop on audit and evaluation of computer security,

Miami Beach, March 22{24, 1977.

[Rut80] Z. Ruthberg, editor. Audit and Evaluation of Computer Secu-

rity II. National Bureau of Standards, NBS, 1980. Proceedings

of NBS invitational workshop, Miami Beach, November 28{30,

1978.

[Scha] Roger R. Schell. Ampli�ed resume. Received October 1993.

[Schb] Roger R. Schell. Biography. Received October 1993.

[Sch72] Roger R. Schell. Notes on an approach for design of secure mil-

itary ADP systems. In Proceedings of the ACM Annual Confer-

ence, pages 665{666. ACM, August 1972.

[Sch73] W. L. Schiller. Design of a security kernel for the PDP-11/45.

Technical Report MTR-2709, MITRE, June 30, 1973. Describes

preliminary design for MITRE brassboard security kernel.

116

[Sch75] W. L. Schiller. Design of a security kernel for the PDP-

11/45. Technical Report ESD-TR-75-69, Electronic Systems

Division, Air Force Systems Command, May 1975. A revision of

MITRE Technical Report MTR-2709. Also published as MITRE

Technical Report MTR-2934. Describes design used in building

MITRE brassboard security kernel.

[Sch77] W. L. Schiller. Design and abstract speci�cation of a Multics

security kernel. Technical Report ESD-TR-77-259, MITRE,

November 1977. AD-A048576. Describes design for Project

Guardian version of Multics. Would have included security ker-

nel, but was never built.

[Sch79] Roger R. Schell. Computer security: The Achilles' heel of the

electronic Air Force? Air University Review, 30:22{24, 1979.

[Sch85] D. Schnackenberg. Development of a multilevel secure local area

network. In Proceedings of the 8th National Computer Security

Conference. NBS/DoD CSEC, 1985. Describes Boeing A1 LAN.

[Sch89] Marvin Schaefer. Symbol security condition considered harm-

ful. In Proceedings of the 1989 IEEE Symposium on Security

and Privacy, pages 20{46. IEEE Computer Society Press, 1989.

Good source on reasons for doubting e�cacy of design veri�ca-

tion.

[Sch92] Roger R. Schell, electronic mail, August 18, 1992. Recipient:

Steve Padilla. Forwarded to Garrel Pottinger by Schell, Decem-

ber 9, 1993.

[Sch93a] Interview with Marvin Schaefer, March 23, 1993. Interviewer:

Garrel Pottinger.

[Sch93b] Interview with Roger R. Schell, October 10, 1993. Interviewer:

Garrel Pottinger.

[Sha90] Stuart S. Shapiro. Computer Software as Technology: An Ex-

amination of Technological Development. PhD thesis, Carnegie

Mellon University, 1990.

[Sim81] Herbert A. Simon. The Sciences of the Arti�cial. MIT Press,

1981. Second edition.

117

[SPD90] Summary of the National Policy for the Security of National

Security Telecommunications and Information Systems, July 5,

1990. Summary of National Security Policy Directive revising

policy stated in NSDD 145 so as to remove con
icts with the

Computer Security Act of 1987. Second stage in dismantling

evaluation center structure worked out by Walker and Inman

was contemporaneous with issuance of directive summarized in

this document. Printed in United States House of Representa-

tives, Implementation of the Computer Security Act (Public Law

100-235): Hearing before the Subcommittee on Transportation,

Aviation and Materials of the Committee on Science, Space,

and Technology, United States House of Representatives, 101st

Congress, Second Session, July 10, 1990, 1990, pp. 69-71.

[SSS86] Systems Security Steering Group. National Policy on Protec-

tion of Sensitive, but Unclassi�ed Information in Federal Gov-

ernment Telecommunications and Automated Information Sys-

tems, October 29, 1986. National Telecommunications and In-

formation Systems Security Policy 2 (NTISSP 2). The Poindex-

ter memorandum. Reprinted in United States House of Repre-

sentatives, The Computer Security Act of 1987: Hearing before

the Subcommittee on Science, Research, and Technology and the

Subcommittee on Transportation, Aviation, and Materials of the

Committee on Science, Space, and Technology, House of Rep-

resentatives, 100th Congress, First Session, February 26, 1987,

1987, pp. 37{40.

[STH85] Roger R. Schell, T. Tao, and Mark Heckman. Designing the

GEMSOS security kernel for security and performance. In

Proceedings of the 8th National Computer Security Conference.

NBS/DoD CSEC, 1985.

[Sto86] William Stoye. Message-based functional operating systems.

The Science of Computer Programming, 6:291{311, 1986.

[Sut86] David Sutherland. A model of information. In Proceedings of

the 9th National Computer Security Conference, pages 175{183.

NBS/NCSC, 1986. Author now known as Ian Sutherland.

[Ten91] Robert D. Tennet. Possible-world semantics of Algol-like lan-

guages. In M. Okada and P. J. Scott, editors,MWPLT 91, pages

118

84{92. Centre for Pattern Recognition and Machine Intelligence,

Concordia University, 1991.

[Tie92] Margaret Tierney. Software engineering standards: The `formal

methods debate' in the UK. Technology Analysis & Strategic

Management, 4:245{278, 1992.

[Tur49] Alan M. Turing. Checking a large routine. In Report on a Con-

ference on High Speed Automatic Calculating Machines. Univer-

sity Mathematics Laboratory, Cambridge, 1949.

[Tur85] David Turner. Miranda: A non-strict functional language with

polymorphic types. In Darlington et al., editors, Proceedings of

the IFIP International Conference on Functional Programming

and its Application. Springer, 1985. LNCS 201.

[Tur86] David A. Turner. An overview of Miranda. SIGPLAN Notices,

21:158{166, 1986.

[Tur87a] David Turner. An introduction to Miranda. In The Implemen-

tation of Functional Programming Languages, pages 431{438.

Prentice-Hall, 1987.

[Tur87b] David A. Turner. Functional programming and communicating

processes. In J. W. de Bakker, A. J. Nijman, and P. C. Tre-

leaven, editors, Proceedings PARLE, Parallel Architectures and

Languages Europe, volume 259 of LNCS, pages 54{74. Springer-

Verlag, 1987.

[Tur90] David A. Turner. Research Topics in Functional Programming.

Addison Wesley, 1990. University of Texas Year of Program-

ming Series.

[Vin90] Walter G. Vincenti. What Engineers Know and How They

Know It. Johns Hopkins University Press, 1990.

[W+73] J. Whitmore et al. Design for MULTICS security enhancements.

Technical Report ESD-TR-74-176, Honeywell Information Sys-

tems, Inc., December 1973. Describes design for version of Mul-

tics installed in 1974 at Air Force Data Services Center in Pen-

tagon (AFDSC Multics). Included security enhancements called

Access Isolation Mechanism (AIM), but no security kernel.

119

[Wal80] Stephen T. Walker. The advent of trusted computer operating

systems. In National Computer Conference Proceedings, pages

655{665. AFIPS Press, May 1980. Important source for infor-

mation on body of experience that established viability of secu-

rity kernel approach to computer security.

[Wal82] Stephen T. Walker. Department of Defense Data Network. Sig-

nal, October 1982.

[Wal93a] Interview with Stephen T. Walker, March 24, 1993. Interviewer:

Garrel Pottinger.

[Wal93b] Stephen T. Walker, electronic mail, November 5, 1993. Recipi-

ent: Garrel Pottinger.

[War70] W. H. Ware, editor. Security Controls for Computer Systems:

Report of Defense Science Board Task Force on Computer Secu-

rity. Rand Corporation, 1970. AD-A076617/0. Reissued Octo-

ber 1979. Provided initial characterization of classical computer

security problem. Led to general DoD recognition of problem.

[Wei69] Clark Weissman. Security controls in the ADEPT-50 time shar-

ing system. In Proceedings of the 1969 AFIPS Fall Joint Com-

puter Conference, pages 119{133. AFIPS Press, 1969.

[Wei73] Clark Weissman. System security analysis/certi�cation meth-

odology and results. Technical Report SP-3728, System Devel-

opment Corporation, October 1973. Very in
uential report on

penetration testing. Basis for Orange Book penetration testing

requirements.

[Wei92] Clark Weissman. BLACKER: Security for the DDN, examples

of A1 security engineering trades. In Proceedings of the 1992

IEEE Symposium on Research in Security and Privacy, pages

286{292. IEEE Computer Society Press, 1992.

[Wei93] ClarkWeissman, electronic mail, December 18, 1993. Recipient:

Garrel Pottinger.

[Wir71] Niklaus Wirth. Program development by stepwise re�nement.

Communications of the ACM, 14:221{227, 1971.

120

[WOG+75] K. G. Walter, W. F. Ogden, J. M. Gilligan, D. D. Schae�er, S. I.

Schaen, and D. G. Shumway. Initial structured speci�cations

for an uncompromisable computer security system. Technical

Report ESD-TR-75-82, Electronic Systems Division, Air Force

Systems Command, 1975. AD-A022490. A design document for

AFDSC Multics.

[WOR+74] K. G. Walter, W. F. Ogden, W. C. Rounds, , F. T. Bradshaw,

S. R. Ames, and D. G. Shumway. Primitive models for computer

security. Technical Report ESD-TR-4-117, Electronic Systems

Division, Air Force Systems Command, 1974. AD-778467. Se-

curity model used in design of AFDSC Multics.

[WSO+75] K. G. Walter, S. I. Schaen, W. F. Ogden, W. C. Rounds, D. G.

Shumway, D. D. Schae�er, K. J. Biba, F. T. Bradshaw, S. R.

Ames, and J. M. Gilligan. Structured speci�cation of a security

kernel. SIGPLAN Notices, 10:285{293, 1975.

121

122

